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MethodsIntroduction

To investigate this, the following research sub-
questions are posed:
1. How to model entangled link generation 

protocol selection as a reinforcement 
learning problem?

2. How to model decay rate drift as 
a reinforcement learning problem?

3. How to model induced decoherence as a 
reinforcement learning environment?

4. How do the agents trained on the models 
constructed in questions 1-3 compare to 
one another in performance and training 
time?

• Multiple protocols exist to generate 
entangled links.

• The main trade-off between them 
is between the fidelity of the link and the 
chance of successfully generating it.

• Choosing which protocol to use to generate 
a link is not a trivial task.

• These links also decay over time in memory.
• It is usually assumed that the rate at 

which these links decay is constant.
• In reality it changes over time in a process 

called parameter drift.
• Another source of instability is a 

phenomenon called induced decoherence: 
the more links stored in memory, the faster 
they decay.

• We are interested in investigating the 
effectiveness of reinforcement learning at 
solving this problem.

• We are also interested in how robust the 
models trained at when facing 
the instabilities described.

Results and Conclusion
Four different RL environments were developed. 

All of these share the following parameters:
The list of protocols which represents the action 

space, the threshold fidelity below which the 
links become useless, and the number of links that 
have to be generated.

The environments are:
1.  Discrete state space

The first environment models the state space 
as the expected lifetime of every link in memory.
This environment was only used during 
hyperparameter tuning and initial testing, and as a 
technical benchmark for the others.
2. Continuous state space, static decay rate

This environment is used as a control for 
the experiment. It has a constant decay rate for 
the stored links.
3. Continuous state space, time dependent

 decay rate (parameter drift)
This environment has an 

additional parameter: an arbitrary time evolution 
function for the link decay rate.
4. Continuous state space, memory dependent

 decay rate (induced decoherence)
This environment is similar to the last, however 

the function now depends on the number of stored 
links in memory instead of time.

Deep Q-Learning models were trained on each 
environment, and then every model was 
evaluated on each environment.

Two different static decay rate models were used 
as control cases, one with a low decay rate and one 
with a high decay rate. The dynamic decay 
rate environments used a linear interpolation 
function between the two control values.

Figure 1: Box plots of the 
performance of every model 
in every environment

Figure 2: Normalized data of
Figure 1. Note the similar 
performance of each model.

Little relative difference was noticed between the four models. 
We feel that this is a sign that our approach is robust and capable 
of handling the unstable environments described.

However we feel that the following limitations must be 
acknowledged:
• The experiment uses only "easy" environments (low number of 

required links). Perhaps a difference does exist in performance 
but it is drowned out by the inherent randomness of the 
system.

• The mathematical models used for parameter drift 
and induced decoherence are simple prototypes. An in-depth 
theoretical investigation of these phenomena is beyond the 
scope of our work.

We believe our work shows that there is potential in a RL-based 
solution to the protocol selection problem. We present a solid 
proof of concept, however larger scale experimentation is 
required to confirm our results.
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