Impacts of parameter drift and induced decoherence in entangled quantum link generation on RL-based policy performance

Introduction

- Multiple protocols exist to generate entangled links.
- The main trade-off between them is between the fidelity of the link and the chance of successfully generating it.
- Choosing which protocol to use to generate a link is not a trivial task.
- These links also decay over time in memor
- It is usually assumed that the rate at which these links decay is constant.
- In reality it changes over time in a process called parameter drift.
- Another source of instability is a phenomenon called induced decoherence: the more links stored in memory, the faster they decay.
- We are interested in investigating the effectiveness of reinforcement learning at solving this problem.
- We are also interested in how robust the models trained at when facing the instabilities described.

To investigate this, the following research sub questions are posed:

- 1. How to model entangled link generation protocol selection as a reinforcement learning problem?
- 2. How to model decay rate drift as a reinforcement learning problem?
- 3. How to model induced decoherence as a reinforcement learning environment?
- 4. How do the agents trained on the models constructed in questions 1–3 compare to one another in performance and training time?

Radu Ionut Ciobanu

	Methods
	Four different RL environments were de
	All of these share the following parameter
	The list of protocols which represents t
	space, the threshold fidelity below which
	links become useless, and the number of
te	have to be generated. The environments are:
гу.	 Discrete state space The first environment models the state
	as the expected lifetime of every link in m
	This environment was only used during
	hyperparameter tuning and initial testing,
	technical benchmark for the others.
:	2. Continuous state space, static dec
r	This environment is used as a control for
	the experiment. It has a constant decay ra
	the stored links.
	3. Continuous state space, time depe
	decay rate (parameter drift)
	This environment has an
	additional parameter: an arbitrary time ev
	function for the link decay rate.
h_	4. Continuous state space, memory o decay rate (induced decoheren
	This environment is similar to the last, h
	the function now depends on the number
	links in memory instead of time.
	Deep Q-Learning models were trained
	environment, and then every model was
	evaluated on each environment.
	Two different static decay rate models
	as control cases, one with a low decay ra
	with a high decay rate. The dynamic deca

rate environments used a linear interpolation function between the two control values.

leveloped. ers: the action the links that

space nemory.

and as a

cay rate or rate for

endent

volution

dependent ice) however er of stored

on each

were used ate and one

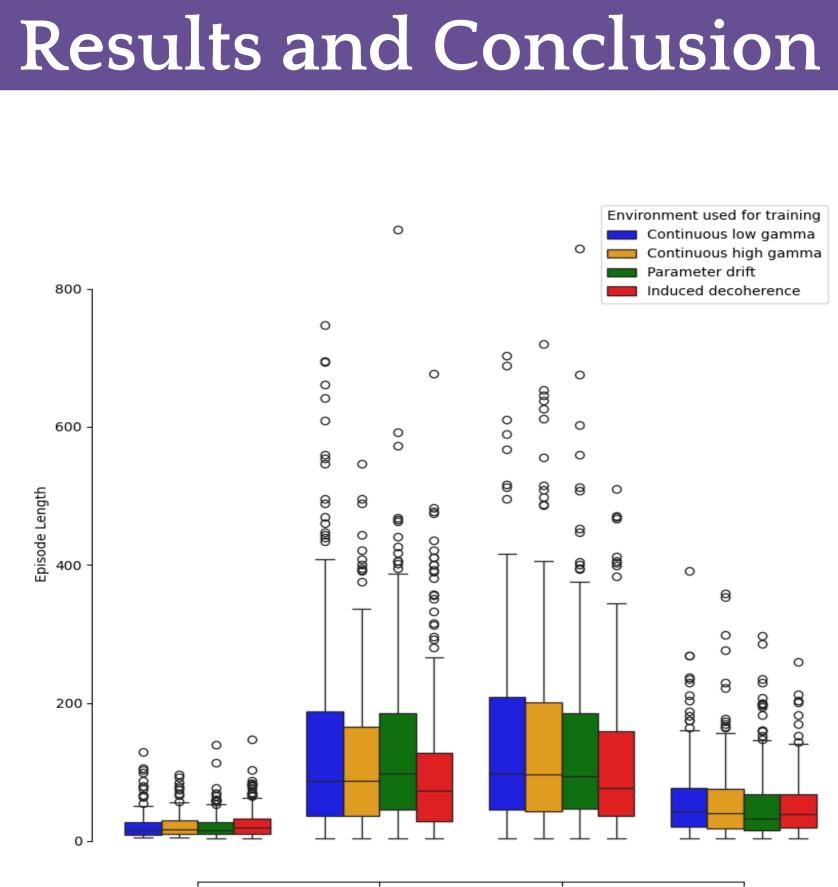


Figure 1: Box plots of the performance of every model in every environment

Little relative difference was noticed between the four models. We feel that this is a sign that our approach is robust and capable of handling the unstable environments described. However we feel that the following limitations must be acknowledged:

- but it is drowned out by the inherent randomness of the system.
- The mathematical models used for parameter drift theoretical investigation of these phenomena is beyond the scope of our work.

We believe our work shows that there is potential in a RL-based solution to the protocol selection problem. We present a solid proof of concept, however larger scale experimentation is required to confirm our results.

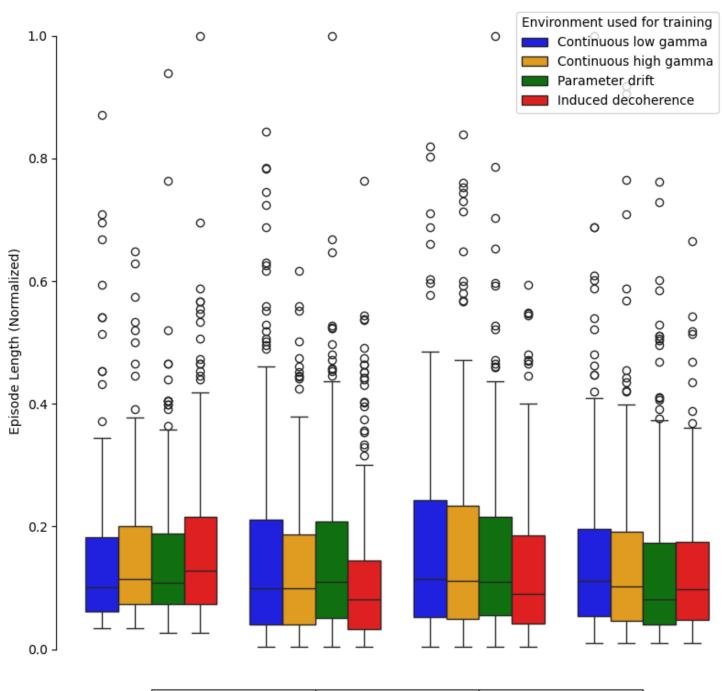


Figure 2: Normalized data of Figure 1. Note the similar performance of each model.

• The experiment uses only "easy" environments (low number of required links). Perhaps a difference does exist in performance

and induced decoherence are simple prototypes. An in-depth