
Decreasing Stability Gap with Neuronal Decay

I Fought the Low
Author:
Kirill Zhankov

Supervisors:
Gido van de Ven
Tom Viering

Contact me:
k.zhankov@student.tudelft.nl
linkedin.com/in/kzhankov

Deep artificial neural networks sometimes need to learn new tasks (say,
the same set of images but rotated) throughout their lifetime, without
relearning from scratch [1]. This is known as continual learning (CL). In
this context, Stability gap (Figure 1) refers to a dip in performance you
may see when the network switches to learning a new task – it
temporarily forgets how to do the previous tasks [2]. This is something we
want to avoid in to keep our applications safe and train efficiently [2-4].

Neuronal decay (ND) is a regularization method that modifies the loss
function in a way to encourage the model to remain sparse, i.e. keep small
activations (Figure 2) [5]. Smaller activations (presumably) lead to more
capacity left for future tasks. Previously, ND was not assessed on stability
gap, so we tried ND to see if it helps to decrease the gap and at what cost.

Q1. Does inclusion of neuronal decay reduce the stability gap, compared
to the baseline that uses replay but not decay?
Q2. Can neuronal decay on its own (with no replay) outperform the
baseline that uses replay but not decay?
Q3. Is there a significant computational overhead associated with using
neuronal decay?

Modify the loss function to account for the activation magnitude:

1. Set up a baseline with the best state-of-the-art method (full
replay) on a multi-layer perceptron.

2. Introduced the neuronal decay.
3. Compared the results visually and with metrics.

Dataset: Rotated MNIST, grayscale images of handwritten digits with
different rotations applied to them (Figure 3).

Metrics: gap depth GD in each interval (percentage points) and time-to-
recover TTR relative to the length of the interval (%), see Figure 1. To
answer Q3, we analytically computed and compared he number of multi-
accumulate operations (MACs) and run a profiler.

Architecture: a simple vanilla multi-layer perceptron, suitable for the
chosen dataset (Figure 2).

Setup: to answer the research questions, we

• We found a decrease in gap depth when using ND (Table 1). TTR was
similar, although there was too much variance to draw a conclusion.

• Higher values of lambda were associated with smaller depth but also
lower accuracy (Figure 4).

• ND used 0.007% more MACs for the chosen size. Increase in time per
batch was 6.66% and 8.56% for CPU and CUDA respectively (Table 1).

• ND without replay performed better than the baseline without replay
but a lot worse than the baseline with replay (result not shown).

• Getting more conclusive results for the TTR metric
• Testing the approach in CNNs and transformers (for example)
• Assessing the model's complexity quantitatively to gain insights

• ND is a solid way to reduce the stability gap and a good candidate for
scenarios where adequate worst-case performance is vital.

• ND was not powerful enough to mitigate the stability gap on its own.
• ND introduced little computational overhead during training – a

property that can be very desirable in CL.
• The proper choice of hyperparameters (especially, lambda) is crucial.

1. Introduction

3. Research Questions

2. Neuronal Decay

4. Methodology 5. Results

6. Future Work

7. Conclusion

References
[1] G. M. van de Ven, T. Tuytelaars, and A. S. Tolias “Three types of incremental learning,” Nature Machine Intelligence, vol. 4, no. 12, pp. 1185–1197, 2022.
[2] M. D. Lange, G. M. van de Ven, and T. Tuytelaars, “Continual evaluation for lifelong learning: Identifying the stability gap,” in The Eleventh Int. Conf. Learn. Representations, 2023.
[3] T. Hess, T. Tuytelaars, and G. M. van de Ven, “Two complementary perspectives to continual learning: Ask not only what to optimize, but also how,” in Proc. of the 1st ContinualAI Unconference ser. Proc. of Machine Learning Research, vol. 249, PMLR, 2024, pp. 37–61.
[4] S. Kamath, A. Soutif-Cormerais, J. Van De Weijer, and B. Raducanu, “The expanding scope of the stability gap: Unveiling its presence in joint incremental learning of homogeneous tasks,” in Proc. of the IEEE/CVF Conf. on Comput. Vis. and Pattern Recognit. Workshops, 2024, pp. 4182–4186.
[5] R. O. Malashin and M. A. Mikhalkova, “Avoiding catastrophic forgetting via neuronal decay,” in 2024 Wave Electronics and its Application in Information and Telecommunication Systems, 2024, pp. 1–6.

Loss function Cross-entropy Neuronal decay

Go over:

every image in batch

every hidden layer

every neuron

Apply activation

function

Input Hidden neurons Output

Dense
MLP

Sparse
MLP

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Low

High

A
ct
iv
at
io
n

Task 1 0° x Task 2 80° x Task 3 160° x

GD

TTR

0 500 1000 1500
Mini-batch index

75

80

85

90

95

100

Te
st

ac
cu

ra
cy

in
Ta

sk
1

(%
)

Baseline
λ = 1 · 10−7

λ = 1 · 10−5

λ = 5 · 10−5

Task switch

490 600

80

100
990 1100

80

100

Figure 3: A single training sample showing
the three tasks used in the study. Each task
corresponds to a distinct rotation.

Figure 1: An example of how gap depth GD
(in p.p.) and time-to-recover TTR (expressed
as the percentage of the total number of
batches in the task) metrics are computed
for the accuracy curve with a stability gap.

Figure 2: a dense network with many active neurons and a sparse network with few
active neurons. Both networks achieve comparable performance, yet neuronal decay
method prefers the sparser network.

Figure 4: Test accuracy (%) for the baseline model and three neuronal decay models with
different values of coefficient lambda. Lower values of lambda result in smaller gap
depth but preserve a higher level of accuracy.

Table 1: Task 1 gap depth GD, Task 1 time-to-recover TTR, average accuracy ACC,
computed in the Task 3 interval and average CPU and CUDA training time per batch for
baseline and neuronal decay (ND) models. The ND model shows a decrease in GD while
sacrificing some accuracy and, on average, spends slightly more time per batch for both
the CPU and CUDA events.; TTR varies greatly in both models.

Model GD1,3 (p.p.) ↓ TTR1,3 (%) ↓ ACCAVG,3 (%) ↑ CPU time (ms) ↓ CUDA time (ms) ↓

Baseline 16.4± 1.4 15.0± 6.4 97.67± 0.17 18.01± 0.61 14.60± 0.16

ND 5.5± 1.0 16.1± 9.6 97.04± 0.16 19.21± 1.20 15.85± 0.48

