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Deep artificial neural networks sometimes need to learn new tasks (say, 
the same set of images but rotated) throughout their lifetime, without 
relearning from scratch [1]. This is known as continual learning (CL). In 
this context, Stability gap (Figure 1) refers to a dip in performance you 
may see when the network switches to learning a new task – it 
temporarily forgets how to do the previous tasks [2]. This is something we 
want to avoid in to keep our applications safe and train efficiently [2-4].

Neuronal decay (ND) is a regularization method that modifies the loss 
function in a way to encourage the model to remain sparse, i.e. keep small 
activations (Figure 2) [5]. Smaller activations (presumably) lead to more 
capacity left for future tasks. Previously, ND was not assessed on stability 
gap, so we tried ND to see if it helps to decrease the gap and at what cost.

Q1. Does inclusion of neuronal decay reduce the stability gap, compared 
to the baseline that uses replay but not decay?
Q2. Can neuronal decay on its own (with no replay) outperform the 
baseline that uses replay but not decay?
Q3. Is there a significant computational overhead associated with using 
neuronal decay?

Modify the loss function to account for the activation magnitude:

1. Set up a baseline with the best state-of-the-art method (full 
replay) on a multi-layer perceptron.

2. Introduced the neuronal decay.
3. Compared the results visually and with metrics.

Dataset: Rotated MNIST, grayscale images of handwritten digits with 
different rotations applied to them (Figure 3).

Metrics: gap depth GD in each interval (percentage points) and time-to-
recover TTR relative to the length of the interval (%), see Figure 1. To 
answer Q3, we analytically computed and compared he number of multi-
accumulate operations (MACs) and run a profiler.

Architecture: a simple vanilla multi-layer perceptron, suitable for the 
chosen dataset (Figure 2).

Setup: to answer the research questions, we

• We found a decrease in gap depth when using ND (Table 1). TTR was 
similar, although there was too much variance to draw a conclusion.

• Higher values of lambda were associated with smaller depth but also 
lower accuracy (Figure 4).

• ND used 0.007% more MACs for the chosen size. Increase in time per 
batch was 6.66% and 8.56% for CPU and CUDA respectively (Table 1).

• ND without replay performed better than the baseline without replay 
but a lot worse than the baseline with replay (result not shown).

• Getting more conclusive results for the TTR metric
• Testing the approach in CNNs and transformers (for example)
• Assessing the model's complexity quantitatively to gain insights

• ND is a solid way to reduce the stability gap and a good candidate for 
scenarios where adequate worst-case performance is vital.

• ND was not powerful enough to mitigate the stability gap on its own.
• ND introduced little computational overhead during training – a 

property that can be very desirable in CL.
• The proper choice of hyperparameters (especially, lambda) is crucial.
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Figure 3: A single training sample showing 
the three tasks used in the study. Each task 
corresponds to a distinct rotation.

Figure 1:  An example of how gap depth GD 
(in p.p.) and time-to-recover TTR (expressed 
as the percentage of the total number of 
batches in the task) metrics are computed 
for the accuracy curve with a stability gap.

Figure 2: a dense network with many active neurons and a sparse network with few 
active neurons. Both networks achieve comparable performance, yet neuronal decay 
method prefers the sparser network.

Figure 4: Test accuracy (%) for the baseline model and three neuronal decay models with 
different values of coefficient lambda. Lower values of lambda result in smaller gap 
depth but preserve a higher level of accuracy.

Table 1: Task 1 gap depth GD, Task 1 time-to-recover TTR, average accuracy ACC, 
computed in the Task 3 interval and average CPU and CUDA training time per batch for 
baseline and neuronal decay (ND) models. The ND model shows a decrease in GD while 
sacrificing some accuracy and, on average, spends slightly more time per batch for both 
the CPU and CUDA events.; TTR varies greatly in both models.

Model GD1,3 (p.p.) ↓ TTR1,3 (%) ↓ ACCAVG,3 (%) ↑ CPU time (ms) ↓ CUDA time (ms) ↓

Baseline 16.4± 1.4 15.0± 6.4 97.67± 0.17 18.01± 0.61 14.60± 0.16

ND 5.5± 1.0 16.1± 9.6 97.04± 0.16 19.21± 1.20 15.85± 0.48


