
Training a Machine-Learning Model for Optimal Fitness Function Selection with the
Aim of Finding Bugs

Author: Stoyan Dimitrov Supervisors: Annibale Panichella, Pouria Derakhshanfar, Mitchell Olsthoorn

Feature
Selection

Outlier
Removal

Data Balancing Classifier

Figure 1: Methodology process

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

60s 180s 300s

Average branch coverage achieved

Branch Coverage Branch coverage + Output diversity Default configuration

lcom* < 0.739

lcom* < 0.597

Branch

Branch + Output

privateFieldsQty < 5

Branch

Branch + Output

True

False

True

False

True

False

Dataset All classes
Classes with significant

difference

BO/BC – branch coverage 60s 346 33

BO/DC – branch coverage 60s 346 60

BO/BC – branch coverage 180s
346 25

BO/DC – branch coverage 180s
346 73

BO/BC – branch coverage 300s
346 24

BO/DC – branch coverage 300s
346 70

BO/BC – mutation score 60s 346 81

BO/DC - mutation score 60s 346 98

Figure 2: Data analysis tool pipeline

Research question

• Class metrics correlate with the performance of the different coverage criteria used in
EvoSuite; especially CBO, LCOM* and LOC.

• Branch + Output coverage criterion performs better than the Branch coverage criteria
in terms of fault detection and achieves almost identical branch coverage.

• We can argue that the performance of the various coverage criteria correlates with
the complexity of the classes under test.

• Increasing the time budget from 1 to 3 minutes increases the performance of all
fitness functions. After the third minute, the increase becomes minimal and even can
have a negative effect when combining many different coverage criteria.

Introduction
Methodology

When and how does Output Diversity affect the number of bugs
detected when combined with branch coverage?

Conclusion

Results

• Why automatic test generation?

• Software testing is essential for assuring the software systems' quality.
• Testing is an effort-intensive task and requires a significant time budget.
• The testing produced by the software developers is usually ineffective.

• What is EvoSuite?

• State-of-the-art tool for automatic generation of unit test cases in Java.
• Produces various test suites based on the selection of coverage criteria.
• Allows investigation of its performance on many popular open-source projects.

• Combining Branch coverage and Output diversity as coverage criteria?

• Branch coverage criterion in EvoSuite achieves the best results among all possible fitness
functions. Output diversity is a promising new black-box testing criterion.

Figure 3: Average branch coverage for 60s, 180 and 300s

Figure 4: Decision tree for the comparison of Branch + Output
coverage and Branch coverage fitness functions, in terms of

branch coverage – 60s

Feature selection - 18 configurations; Outlier removal - 5 configurations; Data Balancing - 14 configurations; Classifiers – 733 configurations

Table 1: Statistical significance test

