A Pseudo-Boolean Approach to Full Graph Anonymisation

Motivation

Before making a network available for social scientists, we must:

- Completely **anonymise** the network
- Change **as little** as possible

 \rightarrow Give a **guarantee** that we made the smallest possible change to the network

Problem Statement

We want to **completely anonymise** a graph G := (V, E), using the (n, m)-k-anonymity measure [4], by removing as **few edges** as possible.

Current Approaches

- No state of the art for complete methods with the (n, m)-k-anonymity measure
- No method that allows for the creation of certificates of optimality
- Unpublished Integer Linear Program (ILP) [2]
 - Uses both **Boolean** and **integer** variables
 - Introduces a Boolean variable $\ell_{u,v}$ for every edge $(u, v) \in E$ in the input graph
 - Maximises sum of all ℓ

ſ	<u></u>
l	\mathcal{Q}

Emke de Groot, supervised by dr. Anna Latour E.A.deGroot-1@student.tudelft.nl

Research Question

How does a **Pseudo-Boolean** approach to network anonymisation compare to the existing methods in terms of solving time, memory consumption and quality of the solution on networks with differing characteristics?

Pseudo-Boolean Constraints

Linear pseudo-Boolean (PB) constraint [1]:

$$\sum_j a_j l_j \bowtie b$$

where a_i and b are integer constants, l_j are literals and \bowtie is one of (=, >, \ge , < or \le).

Constraint Conversion

We have one original constraint for each triangle (u, v, w) in the input graph:

$$t_{u,v,w} \Leftrightarrow (\ell_{u,v} + \ell_{v,w} + \ell_{u,w} \ge 3)$$

We convert this constraint to **two PB constraints**:

 $3 \cdot \overline{t_{u,v,w}} + \ell_{u,v} + \ell_{v,w} + \ell_{u,w} \ge 3$ $t_{u,v,w} + \overline{\ell_{u,v}} + \overline{\ell_{v,w}} + \overline{\ell_{u,w}} \ge 1$

Our Approach

- Implementation of PB model in **Python**
- Solving the model with Gurobi and SCIP
- Using publicly available animal social networks as problem instances [3] \rightarrow largest network: 171 nodes, 378 edges,

3276 triangles, maximum degree 31, maximum incident triangles 351

- Running experiments on **DelftBlue**
- Comparing encoding time, solving **time** and maximum **memory** consumption

 10°

Budgeted version

