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1. Background 3. Methodology
Time Discretization

e Spiking Neural Networks (SNNs): energy-efficient, biologically plausible alternatives CuBa-LIF e There is a varying representation of time in time-based models (working
to costly Deep Neural Networks. [1] e The CuBa-LIF neuron describes the neuron state in terms of membrane in time-steps) and event-based models (working in seconds)

e These models can be simulated on digital chips, which do not work on continuous time. potential which determines the spiking behavior of the neuron, and a current e Using total number of timebins and simulation time to derive timestep
Therefore, the models would need to be time discretized. [3] which represents the pre-synaptic potential. sizes e

e backpropagation through time: tailor weights at every timestep [2] - SLAYER; Fig 1 e The neuron has been discretized based on the Loihi model. timestep size e

e spike-based backpropagation: tailor weights at each output spike [2] - BATS; Fig.2 SLAYER Time-Discretization Datasets

e SLAYER and BATS accompanied by explicit analysis and description of the respective e The model is already working based on timesteps. o MNIST: for BATS: 28x28 pixel images of handwritten digits
backpropagation. Both use CuBa-LIF and achieve state-of-the art performance. e Both forward propagation and backward propagation are time-discretized by e NMNIST: For SLAYER: a neuromorphic version of MNIST; 34x34x2

e convergence rate: how fast does the model learn; relevant for implementing online skipping a number of timesteps equal to the timestep size. e Two datasets are used due to need of out of scope model restructuring
learning; insights into learning process BATS

Change in Convergence Rate

e The model is adapted to use the time-discretized version of CuBa-LIF. e becnhmark convergence rate: the convergence rate achieved by the

— P Geematon e The input is processed to delay spike times to a product of the time-step.
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4. Results and Discussion
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5. Conclusion

Current

Time-discretization minimally affects the convergence rate of
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time approximation. to self-destruct for large ones.

Change in convergence rate with timebin size

. o . . e The model performs better than baseline for 04 { T BT
Fig 1 The figure illustrates the dynamics of Fig 2. This figure illustrates the effect of time timebins 75 and 150. which is surprising. -> .
BPTT for an arbitrary neuron with and discretization on a method with spike-based ’ P g - .. )
without time discretization. The error backpropagation. The regular model will sign of noise being filtered for the particular f 001 Limitations & Future Work
progression for timestep 3 is shown. The update the model at every output spike, dataset. r= 0.2 |
regular model will propagate error on every whereas the time-discretized model will do e Seems to be almost unaffected by time > o e Two different dataset formats were used. They need to be
i ime-di ' i that only on specific intervals equal to the . . . S os ‘ '
timestep, but the time-discretized model will y onsp . g discretization. -> independence from past : standardized for more conclusive results.
skip some. IMEStEP. . . . . , 041 e The backpropagation mechanisms were tested on two
timesteps, timestep sizes not big enough; the .
. . 00375 500 750 1500 different models. An attempt should be made to embed one
dataset is not neuromorphic, Timebin size |
” ‘ SLAYER into the other, | |
2. 0 Jectzve S e Alarger sample of timesteps should be tested to investigate

e The accuracy and convergence rate decrease

L . . model behavior further, especially spike-based models.
with timebins. -> large amount of timesteps P Y sP

Compare the effects of time-discretization on the convergence rate of
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