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Research Question

How do individual time series model 

compare with each other (vanilla 

RNN, LSTM, Bi-LSTM)?

Focusing on short term prediction (30 

seconds in advance)

Introduction

Conclusion

• Deepen the layers of networks

• Grid Search on all stations with more 
parameters and larger ranges

• Try other deep learning models
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• Earthquakes happened in New Zealand 

between 2016 and 2020 [2] (123165)

• Filter out data without time, latitude, longitude, 

magnitude and depth measurements (122465)

Figure 2: Earthquakes happened in New 
Zealand between 2016 and 2020

Figure 3: Distribution of Magnitude Figure 4: Distribution of Depth

• Downsample [3] signals

Figure 5: 100HZ, not normalized seismic waveforms

Figure 6: 50HZ, downsampled and normalized seismic waveforms

Figure 10: Boxplot of each metric over models

Future work

• One of the most devastating catastrophes 

on earth

• Intrinsic nature is random [1] → hard to 

forecast

• Little research on short term forecast

• Compare the performances of different 

recurrent neural networks: vanilla RNN, 

LSTM and Bi-LSTM

Experiment

Step 1: Data Preprocessing

Figure 1: Dots represent 58 stations

Step 2: Training with Neural Networks

Figure 9: RNN structure [4]

Figure 10: LSTM & Bi-LSTM structure [5]

Architecture:

• An RNN/LSTM/Bidirectional LSTM layer with 

input size 1 (one station at a time) and 128

neurons. (Two Bi-LSTM layers for Bi-LSTM)

• A Dropout layer (0.2) 

• A Dense layer 

• Activation function: Sigmoid

• Batchsize: 64

• In general, LSTM performs the best while 

vanilla RNN performs the worst. Bi-LSTM 

might suffer from noise in the data.

• All three models prone to correctly classify 

normal signals rather than earthquake signals.

Figure 9: Avg result of each metrics

Step 3: Dealing with Over-fitting

Step 4: Evaluation: Confusion Matrix & (Weighted) 

Precision & Recall & F1 score & Accuracy, Boxplot

Introduction

• Filter earthquakes with magnitude between 1 and 
3 & with depth less than 200km. (106623)

• Signals close to mid timestamp of two earthquakes 

are classified as normal → 160k normal signals

• Assign each waveform signal to closest station

Figure 7: #earthquakes & normal signals assigned to each station

Figure 8: #earthquakes & normal signals assigned to each station 

after filtering

• Stations with #normal signals > 2 * #earthquake 

signals are discarded → 27 stations

• 5 have over-fitting → Grid Search

• Result for one network for one station

Processing:

• 5-fold cross validation
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