Short-term Earthquake Prediction via Recurrent Neural Networks

Xiangyu Du x.du-1@student.tudelft.nl | Computer Science and Engineering, TU Delft

Introduction

- One of the most devastating catastrophes on earth
- Intrinsic nature is random [1] \rightarrow hard to forecast
- Little research on short term forecast
- Compare the performances of different recurrent neural networks: vanilla RNN, LSTM and Bi-LSTM

Research Question

How do individual time series model compare with each other (vanilla RNN, LSTM, Bi-LSTM)?

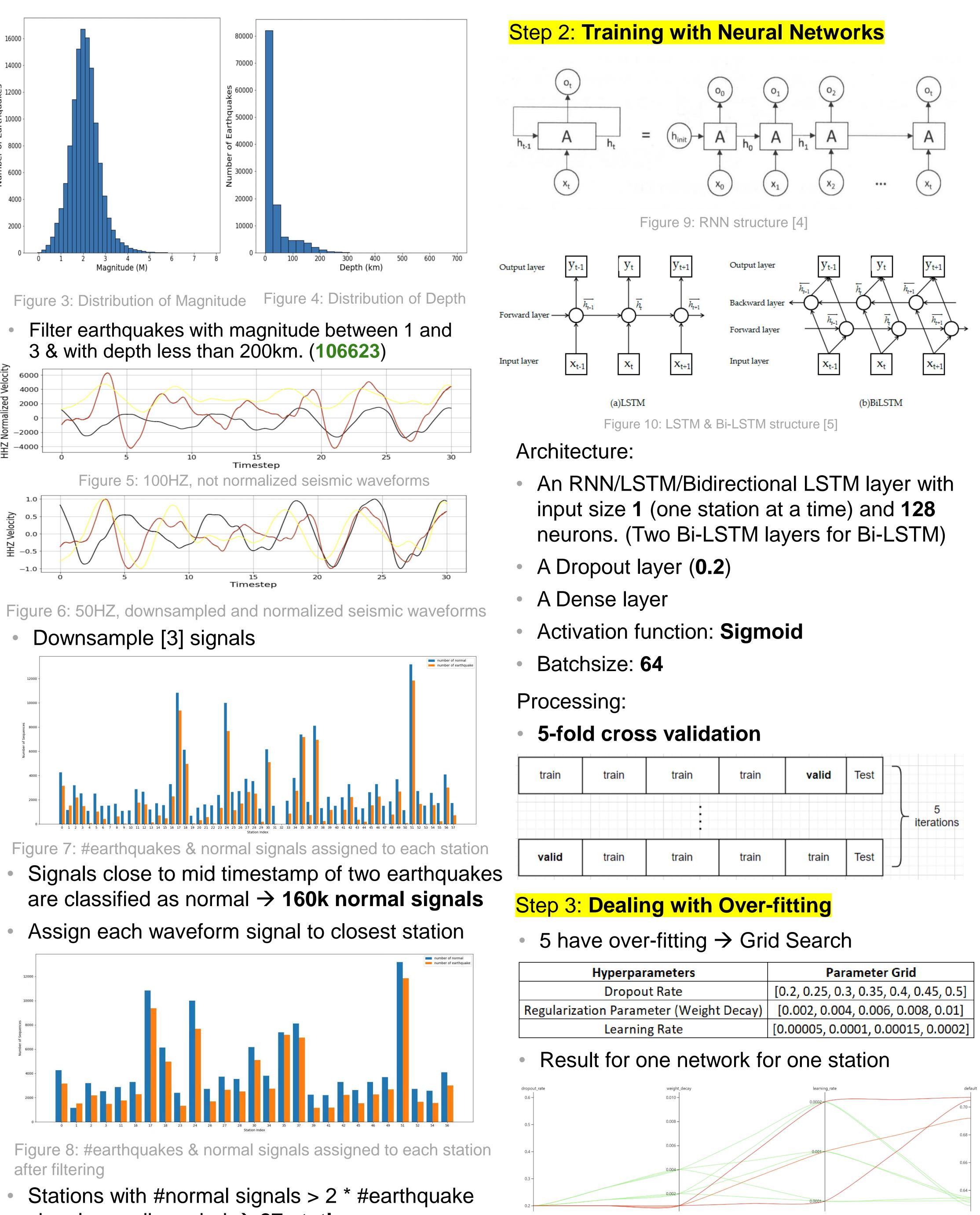
Focusing on short term prediction (30 seconds in advance)

Experiment Step 1: Data Preprocessing 176 172

Figure 1: Dots represent 58 stations

Figure 2: Earthquakes happened in New Zealand between 2016 and 2020

- Earthquakes happened in New Zealand between 2016 and 2020 [2] (123165)
- Filter out data without time, latitude, longitude, magnitude and depth measurements (122465)

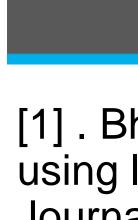


signals are discarded \rightarrow 27 stations

train	train	train	train	valid	Test		
						5 iterations	
valid	train	train	train	train	Test		

Hyperparameters	Parameter Grid			
Dropout Rate	[0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]			
Regularization Parameter (Weight Decay)	[0.002, 0.004, 0.006, 0.008, 0.01]			
Learning Rate	[0.00005, 0.0001, 0.00015, 0.0002]			

	Accuracy	Precision	Recall	F1-score	FN	FP	TN	ТР
vanilla RNN	0.655875	0.622033	0.655875	0.594271	296.8182	58.09091	155.8182	82.13636
LSTM	0.664583	0.646016	0.664583	0.604485	298.9364	55.97273	153.0818	84.87273
Bi-LSTM	0.656961	0.606048	0.656961	0.582474	313.6455	41.26364	170.6091	67.34545



- 2002.

Introduction

Step 4: Evaluation: Confusion Matrix & (Weighted) Precision & Recall & F1 score & Accuracy, Boxplot

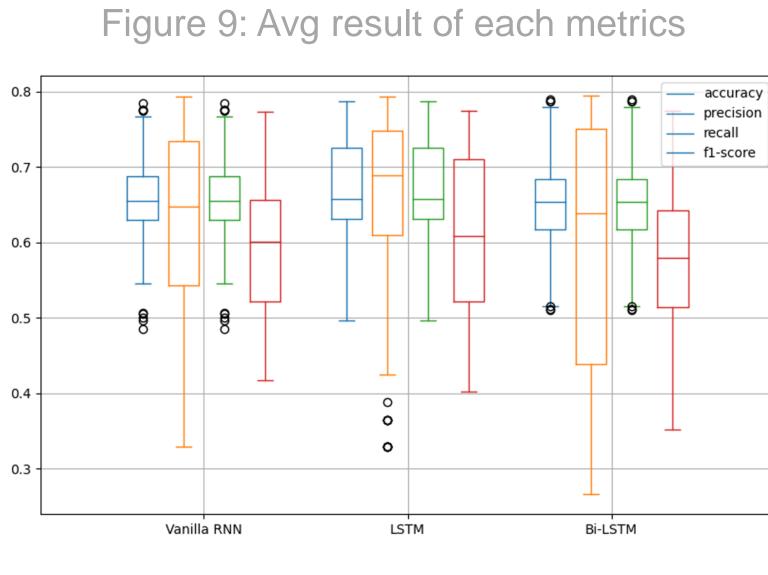


Figure 10: Boxplot of each metric over models

Conclusion

In general, LSTM performs the best while vanilla RNN performs the worst. Bi-LSTM might suffer from noise in the data.

• All three models prone to correctly classify normal signals rather than earthquake signals.

Future work

Deepen the layers of networks Grid Search on all stations with more parameters and larger ranges Try other deep learning models

References

[1]. Bhandarkar et al. "Earthquake trend prediction using long short-term memory RNN". In: International Journal of Electrical and Computer Engineering 9.2 (2019), p. 1304.

[2] <u>https://www.geonet.org.nz/data/tools/FDSN</u>

[3] L. Ruiz, F. Gama, and A. Ribeiro. "Gated Graph Recurrent Neural Networks". In: arXiv (2020), arXiv-

[4] <u>https://www.cnblogs.com/huangyc/p/10366783.html</u> [5] https://analyticsindiamag.com/complete-guide-tobidirectional-lstm-with-python-codes/