
1 . I N T R O D U C T I O N
A knowledge graph created from tabular data adds additional opportunity for the machine

learning model to learn patterns of the data.
XGBoost [4] is a state of the art tree boosting model applicable for many machine learning tasks.

We are trying to outperform it with deep learning models.
The way to do that is combining tabular transformers and graph neural networks (GNNs)

Transformers have been created to avoid recurrence and convolutions . Tabular transformers
build on transformers by being able to work with tabular data.

GNNs learn from a graph by using message passing between nodes
We are trying to find the best performing fused architecture, consisting of a tabular transformer

and a GNN.

H O W  T O  I M P R O V E  T H E  P E R F O R M A N C E  O F  T H E  F U S E D  A R C H I T E C T U R E  C O N S I S T I N G  O F  A  T A B U L A R  T R A N S F O R M E R
A N D  A  G R A P H  N E U R A L  N E T W O R K  U S E D  F O R  R E P R E S E N T A T I O N  L E A R N I N G  F O R  M U L T I M O D A L  D A T A ?

4 . A R C H I T E C T U R E

2 . B A C K G R O U N D
Self-attention assigns a relevance score to each word based on its similarity to other words in the sequence.

FT-Transformer[9] converts every feature to an embedding and applies the Transformer architecture on each. 
Trompt - prompt learning  adjust a large pre-trained model through a set of prompts outside the model.

ResNet[9] - strong baseline, superior performance over traditional Multilayer Perceptrons (MLPs).
GNNs - learn from the graph - aggregate neighborhoods of nodes - aggregate and combine nodes.

GraphSage [11] and GCN [16] are popular, but they have limited ability to capture simple graph structures [22].
(GIN) [22]  matches the power of the WL test,  the most expressive.

GINe [13] builds on GIN - pretrain on both local and global neighborhoods.
(PNA) [5] graph isomorphism, countable feature spaces, continuous features, combination of aggregators.

6 . R E S U L T S

5 . E X P E R I M E N T S
AML dataset[1]

timeline: PNA -> Trompt -> GraphSage -> ResNet
Accuracy: proportion of correctly predicted masked cells within the

categorical features.
hits@k: fraction of the positive edges are ranked in the first k positions

7 . F U T U R E  W O R K
run more epochs and more runs per experiment, parameter tune Trompt, generalize algorithm for different datasets, make

algorithm more efficient, remove unnecessary data transfers between GPU and CPU, integrate XGBoost, use standard
benchmark for measuring transformer performance
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fused architecture with a transformer and a GNN

8 . C O N C L U S I O N
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3 . L I M I T A T I O N S
Transformers have been used together with GNNs, but that model is impossible to be used for tabular data [23]

need to standardize performance measurement, to facilitate accurate and objective comparisons between
different transformers [9] - could be addressed by using the standard benchmark for evaluating models [10]. 

need to understand theoretical properties and limitations of GNNs [22] - framework for analyzing the expressive
power of GNNs [22]
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best for accuracy and RMSE : fused FT-Transformer and PNA 
best for MRR: PNA

best transformers: FT-Transformer and ResNet very close performance
more hidden layers better for fused - up to 512

transformers can learn from tabular data, GNNs - from graphs
self-supervised learning on AML dataset

combining tabular transformers with graph neural networks (GNNs) can enhance the predictive abilities on tabular data
the FT-Transformer and GINe fused architecture’s performance can be improved by integrating PNA, GraphSage underperforms

because of its weakness in capturing simple graph structures
future improvements can be made - optimize algorithm, integrate XGBoost, generalize algorithm to perform well on different datasets
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