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INTRODUCTION RESULTS RESULTS

Both Ada-GWN and nonAda-GWN perform significantly
better than ARIMA on all aggregation levels. Ada-GWN

CONCLUSION

This paper showed very low MAPE errors of 6,60 % and
7,89% at the highest aggregation level, comparable to

With an increase in renewable energy sources, which are
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The framework for Graph WaveNet [3].

Figure 1. The MAPE and RMSE errors of the models trained on all

aggregation levels.

Tablel. Average percentage increase between adjacent aggregation

levels.
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