Alexandru - Cristian Dumitrache adumitrache@tudelft.nl

0

0

Voltage Supply for Liquid C Intelligent Surfa

1. Introduction

RIS (Reconfigurable Intelligent Surface)

An RIS is a meta-surface composed of an arbitrary number of radiating elements, which can be individually tuned to manipulate EM (electromagnetic) waves.

Ó

An LC-RIS is a type of RIS that uses liquid crystal materials.

4. Results

Output Analysis

-0

- Configured at a voltage range of ±15V
- Code 2890; expected 6.17 V, measured at 6.22 V
- Expected 1Khz square waveform, measured at 992 Hz
- Perfect duty-cycle of 50%

2. Research Objective

Research Question:

"What is a scalable, low-latency hardwaresoftware solution for controlling high-speed LC-R

LC-RIS Reference System:

"Architecture for sub-100 ms liquid crystal reconf on defected delay lines" by Neuder et al.

Technical Requirements:

- Independent voltage control for ≥ 50 output chai
- Software controllable, preferably with Python su
- Output waveform: Square wave at 1 kHz.
- Voltage range: Minimum ±10 V.
- Resolution: At least 7-bit.
- Fast response: Voltage updates within < 1 ms.

Response Time Analysis

- All tests SPI frequency of 25 MHz
- Best Time Update of one single channel
- Worst Time Update of all 64 channels
- Two code style implementations: • Minimalistic
 - Object Oriented (OO)
- Best result: Raspberry Pi Pico in minimalist C

rystal F ace Bias	Reco	onfig	gurable	Supervisors: Arash Asadi & Fabian Portner
			- Used setu	system Design
IS systems?"			• Slo	p. DACOUDSDEVIN w response times - update of 64 channels - 161 μs precated
			New setu	b: 4 x LTC2688
igurable intelligent surface based			• Fa • Da • In-	ster response times - update of 64 channels - 62 μs isy - chain configuration built power supply built oscillator for 1KHz, souare wave generation
nnels. Ipport			• Sc	alable and flexible
			SPI Master	On-board Oscillator
	Best Time	Worst Time		REGISTER A MUX DAC DAC
Device	µs			
Ideal	26	103		
(minimalist C)	50	813		onclusions
(minimalist Python)	60	974		
(OO Python)	99	1600	Future Im	provements
(minimalist C)	40	273	• SPI m	aster needs further analysis and development ency can be improved by adding manual tuning
(minimalist MicroPython)	57	935		
(OO MicroPython)	3680	82120		machiover desired output fulfilling requirements
PC + FT232H (minimalist Python)	1430	24050	• Syste	dapt for changes in the LC-RIS requirements
PC + FT232H (OO Python)	1780	24250		

0-