
Machine-Learning for Optimal Fitness Function Selection in Automated Testing
Author: Daniela Toader

Supervisor(s): Annibale Panichella, Pouria Derakhshanfar, Mitchell Olsthoorn

2. RESEARCH QUESTIONS

• To what extent does bcwm affect
structural coverage and fault
detection capabilities for different
search budgets?

• What is the relationship between
class static code metrics and the
structural coverage and fault
detection capabilities when using
bcwm?

1. INTRODUCTION

Testing
• essential step in assuring the quality of software
• goal is finding potentially dangerous faults in code

EvoSuite [1]

• SOTA tool that generates unit-level test suites
• uses a genetic algorithm, which optimises for

multiple criteria (objectives) simultaneously [2]

• ran with criteria default, branch (coverage) and
branch coverage & weak mutation (bcwm)

Research gap
• lack of information that relates objectives to class

properties and in turn to coverage and fault-
finding capabilities

Performance
• bcwm ≤ branch in 86.5% (branch coverage)
• bcwm ≥ default in 90.0% (branch coverage)
• bcwm ≥ branch in 77.4% (mutation score)
• bcwm ≤ default in 84.2% (mutation score)

Models
• Random Forest performs best, Decision Tree is second
• Logistic Regression has lowest performance, Support

Vector Classifier is second to last
• Most frequent features – loc, wmc, mathOperationsQty,

cbo, fanout, rfc

Evaluation

Assigning 
labels and 

training the 
models

Class metrics 
extraction 

and data pre-
processing

Statistical 
significance 
and effect 

size analysis

Data 
gathering 

and 
performance 
comparison

3. METHODOLOGY

4. RESULTS

5. CONCLUSION

Figure 1. Decision Tree path with 
bcwm label (branch coverage -

60 seconds)

68.75% 72.02% 74.85% 77.42%

90.14% 89.18% 90.88%

48.74%

branch_60 branch_180 branch_300 mutat ion

Table 2. Performance comparison of
bcwm vs branch and vs default

bcwm ≥ branch bcwm ≥ default

DT SVC RF LR

branch_60 0.89 0.76 0.93 0.57

branch_180 0.91 0.74 0.95 0.57

branch_300 0.94 0.71 0.97 0.49

mutation 0.90 0.71 0.93 0.63

7. REFERENCES

[1] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-
oriented software. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, pages 416–419, 2011

[2] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Automated test case
generation as a many-objective optimisation problem with dynamic selection of the targets.
IEEE Transactions on Software Engineering, 44(2):122–158, 2017

Table 1. F1 Scores of the models

6. LIMITATIONS & FUTURE WORK

• Computational power – more extensive Grid Search for
hyperparameter tuning

• Time frame – more search budgets, optimisation criteria,
and models, more data balancing, feature selection and
extraction techniques


