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2. RESEARCH QUESTIONS

• To what extent does bcwm affect
structural coverage and fault
detection capabilities for different
search budgets?

• What is the relationship between
class static code metrics and the
structural coverage and fault
detection capabilities when using
bcwm?

1. INTRODUCTION

Testing
• essential step in assuring the quality of software
• goal is finding potentially dangerous faults in code

EvoSuite [1]

• SOTA tool that generates unit-level test suites
• uses a genetic algorithm, which optimises for

multiple criteria (objectives) simultaneously [2]

• ran with criteria default, branch (coverage) and
branch coverage & weak mutation (bcwm)

Research gap
• lack of information that relates objectives to class

properties and in turn to coverage and fault-
finding capabilities

Performance
• bcwm ≤ branch in 86.5% (branch coverage)
• bcwm ≥ default in 90.0% (branch coverage)
• bcwm ≥ branch in 77.4% (mutation score)
• bcwm ≤ default in 84.2% (mutation score)

Models
• Random Forest performs best, Decision Tree is second
• Logistic Regression has lowest performance, Support

Vector Classifier is second to last
• Most frequent features – loc, wmc, mathOperationsQty,

cbo, fanout, rfc
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Figure 1. Decision Tree path with 
bcwm label (branch coverage -

60 seconds)
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Table 2. Performance comparison of
bcwm vs branch and vs default

bcwm ≥ branch bcwm ≥ default

DT SVC RF LR

branch_60 0.89 0.76 0.93 0.57

branch_180 0.91 0.74 0.95 0.57

branch_300 0.94 0.71 0.97 0.49

mutation 0.90 0.71 0.93 0.63
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Table 1. F1 Scores of the models

6. LIMITATIONS & FUTURE WORK

• Computational power – more extensive Grid Search for
hyperparameter tuning

• Time frame – more search budgets, optimisation criteria,
and models, more data balancing, feature selection and
extraction techniques


