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e Large Language Models (LLMs) require signiticant computational
resources and memory for training and deployment.

e The CO2 emission of training GPT-3 model (175B parameters) amounts to

three times that of a whole jet plane for San Francisco <> New York [1].

e Previous research only demonstrated compression of BERT models, up to
60% in size & 40% in runtime.

e Limited application of compression techniques on LLMs tfor the GPT model

and the code generation task.

Compression techniques:
e Knowledge distillation - training a smaller student model from outputs
of a larger teacher model.
e Pruning - dropping unnecessary connections and neurons.
e Quantization - lower the parameter precision (INT8 instead of FP32).

CodeGPT-small [2] - Microsotft's model, fine-tuned for one epoch on the
code completion PY150 dataset [3].

1. How does the performance of the CodeGPT model change after
applying Group Lasso pruning”

2. How does the performance of the pruned model change atfter applying
post training quantization?

Group lasso pruning - uses Group lasso regularization to prune entire rows,
columns, or blocks of parameters that result in a smaller dense network.
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Fig. 1: Weight pruning visualized. The light blue circles denote that entire blocks
(matrices) were pruned (set to 0). Source: [4]

Compressing code generation language models on CPUs
Using Group Lasso pruning and post-training quantization

Hardware: Delft-Blue HPC's Intel XEON E5-6248R 24C 3.0GHz CPUs (8 units, 4GB
of memory). Local setup with Intel i9 T1900H.

Compression library: intel-extension-tor-transtormers, intfroduced in [§]
Evaluation dataset: PY150, 1000 samples.
Evaluation metrics: Exact Match (EM) and Edit Similarity (ES).

Deltt-Blue results

Model name Disk size Mem usage CPUintf Editsim EM  Params
(MB) (MB) (samples/sec) (%) (%) (Mil.)
original 462.26 2976 2.66 39.05 14.5 124 .2
pruned 240.52 3175 2.79 30.54 9 49.77
quantized 260.39 3293 2.68 20.76 0.5 49.77

Laptop results on pruning

Model name Disk size Mem usage CPU inf Editsim EM Params
(MB) (MB) (samples/sec) (%) (%) (Mil.)
original 462.26 2184.49 0.80 39.05 14.5 124.2
compressed 240.52 2189.63 0.80 30.54 9.0 49.77
onnx inference 311.75 4166.37 1.59 30.54 9.0 49.77

Post training dynamic quantization - The weights of the neural network get
quantized into int8 format from float32, where the clipping range is determined
dynamically:

Input prompt: Input prompt:

# Sort a list of integers by the def binary_search( , nums):
# numbers of digits they have =¥
def sort by num_digis( ) : = len(nums) - 1
Activation .4 14 5 27 8 Activation 11 02 -5 -3 .9
at layern at layern
Max abs value Max abs value
. 5 ) 1.1
Dynamic Dynamic
Quantization Scale Quantization Scale
25.4 115
Quantize activation into INT8 Quantize activation into INT8
-10 36 127 69 20 127 23 -9 -35 104

Fig. 2: PTQ visualized, where the weight clipping range is determined dinamically. Each input
prompt has a ditfferent max abs value and theretfore gets a different scale. Source: [5]
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e With pruning at 60% sparsity achieved 48% reduction in model size
with minimal drop in accuracy.

e 2x inference speedup using ONNX runtime optimizations.

e Limited quantization results.

Comparable performance to other concurrent compression methods:

¢ CodeGPT on XTC [6] - highest reduction in disk size (15x) and the
most impressive CPU and GPU inference results.

e Distill-CodeGPT [7] - low GPU model size, and considerable memory
usage and inference speed improvements.

e MP and PEG PTQ on CodeGPT [8] - 4x reduction and highest scores
in the accuracy metrics but lacking results for other measures.

e Our solution - 2x reduction in model size and lowest number of

parameters.

Considerations:
e CodeGPT - a small model with limited accuracy.
e Variations/noise in memory usage and inference measurements.
e Limited library support tor compressing GPT models & missing Inference
Engine optimized for low-precision computations.
e Uncertain generalizability of results to a wider range of models.

e Group Lasso pruning at 60% sparsity achieved 48% reduction in model
size with 8.5% absolute drop in ES and a 5.5% in EM.

e 2x inference speedup using ONNX runtime optimizations.

e Quantization did not provide any speedups.

e Enabled more etticient and eco-friendly use ot GPT-based language
models.

e More complex models.

e Longer fine-tuning periods (>1 epoch).

e Using more mature compression libraries.
e More advanced compression techniques.
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