
Compressing code generation language models on CPUs
Using Group Lasso pruning and post-training quantization

 1. Introduction

Large Language Models (LLMs) require significant computational
resources and memory for training and deployment.
The CO2 emission of training GPT-3 model (175B parameters) amounts to
three times that of a whole jet plane for San Francisco ↔ New York [1].
Previous research only demonstrated compression of BERT models, up to
60% in size & 40% in runtime.
Limited application of compression techniques on LLMs for the GPT model
and the code generation task.

Knowledge distillation - training a smaller student model from outputs
of a larger teacher model.
Pruning - dropping unnecessary connections and neurons.
Quantization - lower the parameter precision (INT8 instead of FP32).

Compression techniques:

CodeGPT-small [2] - Microsoft's model, fine-tuned for one epoch on the
code completion PY150 dataset [3].

1. How does the performance of the CodeGPT model change after
applying Group Lasso pruning?

2. How does the performance of the pruned model change after applying
post training quantization? 
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2. Research Questions

References

Hardware: Delft-Blue HPC's Intel XEON E5-6248R 24C 3.0GHz CPUs (8 units, 4GB
of memory). Local setup with Intel i9 11900H.
Compression library: intel-extension-for-transformers, introduced in [6]
Evaluation dataset: PY150, 1000 samples.
Evaluation metrics: Exact Match (EM) and Edit Similarity (ES).

4. Results

Delft-Blue results

Laptop results on pruning

With pruning at 60% sparsity achieved 48% reduction in model size
with minimal drop in accuracy.
2x inference speedup using ONNX runtime optimizations.
Limited quantization results.

CodeGPT on XTC [6] - highest reduction in disk size  (15x) and the
most impressive CPU and GPU inference results.
Distill-CodeGPT [7] - low GPU model size, and considerable memory
usage and inference speed improvements.
MP and PEG PTQ on CodeGPT [8] - 4x reduction and highest scores
in the accuracy metrics but lacking results for other measures.
Our solution - 2x reduction in model size and lowest number of
parameters.

CodeGPT - a small model with limited accuracy.
Variations/noise in memory usage and inference measurements.
Limited library support for compressing GPT models & missing Inference
Engine optimized for low-precision computations.
Uncertain generalizability of results to a wider range of models.

Comparable performance to other concurrent compression methods:

Considerations:

5. Discussion

Group Lasso pruning at 60% sparsity achieved 48% reduction in model
size with 8.5% absolute drop in ES and a 5.5% in EM.
2x inference speedup using ONNX runtime optimizations.
Quantization did not provide any speedups.
Enabled more efficient and eco-friendly use of GPT-based language
models.

6. Conclusion

More complex models.
Longer fine-tuning periods (>1 epoch).
Using more mature compression libraries.
More advanced compression techniques.

7. Future Work

Group lasso pruning - uses Group lasso regularization to prune entire rows,
columns, or blocks of parameters that result in a smaller dense network.

Post training dynamic quantization - The weights of the neural network get
quantized into int8 format from float32, where the clipping range is determined
dynamically: 

Fig. 1: Weight pruning visualized. The light blue circles denote that entire blocks
(matrices) were pruned (set to 0). Source: [4]

3. Methodology

Fig. 2: PTQ visualized, where the weight clipping range is determined dinamically. Each input
prompt has a different max abs value and therefore gets a different scale. Source: [5]


