
Compressing code generation language models on CPUs
Using Group Lasso pruning and post-training quantization

 1. Introduction

Large Language Models (LLMs) require significant computational
resources and memory for training and deployment.
The CO2 emission of training GPT-3 model (175B parameters) amounts to
three times that of a whole jet plane for San Francisco ↔ New York [1].
Previous research only demonstrated compression of BERT models, up to
60% in size & 40% in runtime.
Limited application of compression techniques on LLMs for the GPT model
and the code generation task.

Knowledge distillation - training a smaller student model from outputs
of a larger teacher model.
Pruning - dropping unnecessary connections and neurons.
Quantization - lower the parameter precision (INT8 instead of FP32).

Compression techniques:

CodeGPT-small [2] - Microsoft's model, fine-tuned for one epoch on the
code completion PY150 dataset [3].

1. How does the performance of the CodeGPT model change after
applying Group Lasso pruning?

2. How does the performance of the pruned model change after applying
post training quantization?

Author: Dan Sochirca
Supervisors: Maliheh Izadi, Ali Al-Kaswan
Responsible Professor: Arie van Deursen

[1] Patterson, D. et al. Carbon emissions and large neural network training, 2021.
[2] Microsoft. microsoft/codegpt-small-py at main. https://huggingface.co/microsoft/CodeGPT-small-py/tree/main, 2023.
Accessed: 2023-06-26.
[3] 0n1xus. 0n1xus/codexglue. https://huggingface.co/datasets/0n1xus/codexglue, 2023. Accessed: 2023-06-26.
[4] Intel(r) Neural Compressor. Pruning. Github, May 2023. https://github.com/intel/neural-
compressor/blob/master/docs/source/pruning.md (Accessed on 16 May 2023).
[5] Wei, X. et al. Greener yet Powerful: Taming Large Code Generation Models with Quantization, March 2023.
arXiv:2303.05378 [cs].
[6] Shen, H. et al. Fast DistilBERT on CPUs, December 2022. arXiv:2211.07715 [cs]
[7] de Moor, A. et al. CodeGPT on XTC: Compressing a CodeGPT Model Using Hybrid Layer Reduction and Extreme
Quantisation through Knowledge Distillation. Delft University of Technology, 2023. http://resolver.tudelft.nl/uuid:f37924fc-
ecac-4bd4-b923-7d4c73f74a72.
[8] Malmsten, E. et al. Distil-CodeGPT, Distilling Code-Generation Models for Local Use. Delft University of Technology, 2023.
http://resolver.tudelft.nl/uuid:22217e2b-0db8-4c56-8808-9713dd678425.
[9] Storti, M. et al. Leveraging Efficient Transformer Quantization for CodeGPT: A Post-Training Analysis. Delft University of
Technology, 2023. http://resolver.tudelft.nl/uuid:b1f0ef47-9c85-41ce-9b0f-fb092ba333db.

2. Research Questions

References

Hardware: Delft-Blue HPC's Intel XEON E5-6248R 24C 3.0GHz CPUs (8 units, 4GB
of memory). Local setup with Intel i9 11900H.
Compression library: intel-extension-for-transformers, introduced in [6]
Evaluation dataset: PY150, 1000 samples.
Evaluation metrics: Exact Match (EM) and Edit Similarity (ES).

4. Results

Delft-Blue results

Laptop results on pruning

With pruning at 60% sparsity achieved 48% reduction in model size
with minimal drop in accuracy.
2x inference speedup using ONNX runtime optimizations.
Limited quantization results.

CodeGPT on XTC [6] - highest reduction in disk size (15x) and the
most impressive CPU and GPU inference results.
Distill-CodeGPT [7] - low GPU model size, and considerable memory
usage and inference speed improvements.
MP and PEG PTQ on CodeGPT [8] - 4x reduction and highest scores
in the accuracy metrics but lacking results for other measures.
Our solution - 2x reduction in model size and lowest number of
parameters.

CodeGPT - a small model with limited accuracy.
Variations/noise in memory usage and inference measurements.
Limited library support for compressing GPT models & missing Inference
Engine optimized for low-precision computations.
Uncertain generalizability of results to a wider range of models.

Comparable performance to other concurrent compression methods:

Considerations:

5. Discussion

Group Lasso pruning at 60% sparsity achieved 48% reduction in model
size with 8.5% absolute drop in ES and a 5.5% in EM.
2x inference speedup using ONNX runtime optimizations.
Quantization did not provide any speedups.
Enabled more efficient and eco-friendly use of GPT-based language
models.

6. Conclusion

More complex models.
Longer fine-tuning periods (>1 epoch).
Using more mature compression libraries.
More advanced compression techniques.

7. Future Work

Group lasso pruning - uses Group lasso regularization to prune entire rows,
columns, or blocks of parameters that result in a smaller dense network.

Post training dynamic quantization - The weights of the neural network get
quantized into int8 format from float32, where the clipping range is determined
dynamically:

Fig. 1: Weight pruning visualized. The light blue circles denote that entire blocks
(matrices) were pruned (set to 0). Source: [4]

3. Methodology

Fig. 2: PTQ visualized, where the weight clipping range is determined dinamically. Each input
prompt has a different max abs value and therefore gets a different scale. Source: [5]

