
Sarah van de Noort (S.J.A.vandeNoort@student.tudelft.nl) Supervisors: Jesper Cockx & Bohdan LiesnikovCSE3000 - Research Project

 Some bugs in evaluator could be fixed
 Evaluate lazily instead of with call-by-need
 No dependent types, therefore no 

correctness guarantees
 Combination between inductive and 

coinductive by having inductive 
expressions but a coinductive evaluator.

 Limitations & Future work

 Inductive: Evaluator either needs disabled 
termination checker, or fuel parameter.

 Coinductive: Productive but needs 
inductive function to force result 
afterwards.

 Agda Challenges
 Unclear error reporting: The error 

messages include unknow variables and 
highlighting is imprecise

 Productivity checking: Even trivial 
functions like id prevent guardedness

 Lacking documentation: Not all language 
features explained. Code reading needed.

 Evaluation

 Encodings
There are different places where cycles appear in 
lambda calculus
 Variable bindings: Variables refer back to the 

application where they were bound to a value. Due 
to time constraints not implemented

 Recursive variables: Recursive variables refer 
back to the expression defined recursively.

 Research Questions

My research questions are as follows
 What are the different ways to model 

evaluation of lambda calculus using cyclic 
data structures, and thus coinduction

 How do the models compare to each other 
in terms of ease of implementation and their 
limitations

 How suitable are these models to Agda and 
what are limitations Agda has that got in the 
way of evaluating lambda expressions?

Untyped Lambda Calculus consists of three 
components
 Functions: A body and a parameter 

available in the body
 Application: Binds a value to a parameter in 

a functio
 Variable reference: Accesses this 

parameter.

 Background

(λx.λy.x)(10)



Defines a function that always returns 10

A common extension is letrec where a variable 
is defined that can recursively reference itself.

Agda is a total language usable as proof 
assistant.



Totality means all programs have to terminate 
successfully. Infinite or cyclic structures are not 
allowed generally.



Coinduction allows modelling infinite

data within Agda

Productively recursing infinitely
Modelling evaluation of lambda calculus with coinduction in Agda

λ


