
CNNs VS imbalanced datasets

1. Background
❖ Convolutional Neural Networks (CNN) widely used1

❖ Mostly viewed as Black Boxes1

❖ What are Imbalanced dataset?2

❖ Imbalance is not uncommon3

➢ Harder to get samples of rare diseases

        5. Datasets
❖ Synthetic
❖ U(1, 10) 

➢ reference dataset

❖ U(1, 5) 
➢ missing targets

❖ N(5.5, 1)
➢ different distribution

        2. How do imbalanced training datasets affect the performance of CNNs?
❖ Performance of network trained on:

➢ Balanced datasets
➢ Datasets with missing targets
➢ Dataset with normally distributed targets

❖ Related work shows:
➢ networks trained on balanced datasets significantly outperform others3-10

        6. Results
❖ Mean-squared error
❖ Baseline
❖ All networks tested on U(1, 10) datasets
❖ Experiments repeated 10 times
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        3. CNN

❖ Shallow network11

❖ Adam optimizer12

❖ Standard deviation

        4. Datasamples
❖ Samples have N(0, x2) distribution

➢ x is drawn from target distribution dependant on dataset
❖ Visualisation of N(0, 22) and N(0, 102) samples:

        7. Discussion and conclusion
❖ All networks significantly outperformed the baseline

➢ Networks were able to learn the task with imbalanced datasets

❖ The networks trained on the balanced datasets had the best performance
➢ In line with hypothesis

❖ The networks trained on the datasets with normally distributed targets performed slightly worse
➢ Some  targets underrepresented -> networks were not able to predict those as effectively

❖ The networks trained on the datasets with missing targets had the worst performance
➢ Training sets did not include all of the targets of the test sets -> the networks were unable to perform as well as 

the networks trained on other target distributions
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