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Traditionally mathematics has been 
written by hand using set theory.

Type theory is the mathematical field 
of using Types and Type Checkers as 
we know them in Computer Science 
to redefine mathematics.

Type theory is understandable by 
computers, leading to computer 
assisted proofs and the formalization 
of large parts of mathematics.

Homotopy Type Theory (HoTT) 
answers the question “What is a 
Type?” by interpreting Types as 
Spaces

Some notions become intuitive: 
A member of a Type is a point in the  
Space

Two members are equal if there is a 
path between them

A big question is: when are two entire 
types equal? This is where most HoTT
research is.

One of the advantages of seeing types 
as spaces is our ability to redefine 
equality

Traditional point-wise equality is too-
strict for many purposes

A recent breakthrough in HoTT is the 
addition of the Univalence Axiom (UA)

The UA states that if two spaces can 
be continuously transformed between 
them, then they are equal

These transformations are called 
“Isomorphisms”.

For an example of traditional equality 
being too strict see these two 
monoids:

M1 and M2 are isomorphic, we can 
transform them using:

M1 and M2 behave the same in most 
situations, but traditionally they are 
not be equal

The paper that I surveyed [1] explores 
how to define these monoids and other 
complex structures so that we can 
prove them equal using univalence

This is the resulting structure:

This is a Code for Monoids, it contains 
all the monoid data: b is the binary 
operator, e is the identity element, and 
laws contains the laws for monoids.

This formulation allows us to proof 
equality for monoids using the 
following proof:

We know that the structures respect 
isomorphism, so we can substitute 
them and thus they are equal, the 
Carrier Type is also equal because of 
univalence, so the entire Instance is 
equal.

The system in the reference paper 
works well and is expandable, further 
research needs to be made into seeing 
how this definition adapts to other 
structures, such as groupoids or 
monoids not built on sets.

The implications of proving equality 
from isomorphism are great, 
including recent research in using a 
simpler less optimized 
implementation to make proofs about 
a faster and more complex 
implementation. [2]

We can modify the Code to create a 
set with multiple monoid structures, 
this is an example with two operators:

This pattern can be repeated to add an 
arbitrary number of operators and 
identity elements to the set, showing 
how the Code system is easily 
expandable.

Figure 1: topological visualization of a = b= c

Figure 2: topological visualization of an 

isomorphism
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