
Raul Santana Trejo – Group 24

(R.SantanaTrejo@student.tudelft.nl)

Traditionally mathematics has been
written by hand using set theory.

Type theory is the mathematical field
of using Types and Type Checkers as
we know them in Computer Science
to redefine mathematics.

Type theory is understandable by
computers, leading to computer
assisted proofs and the formalization
of large parts of mathematics.

Homotopy Type Theory (HoTT)
answers the question “What is a
Type?” by interpreting Types as
Spaces

Some notions become intuitive:
A member of a Type is a point in the
Space

Two members are equal if there is a
path between them

A big question is: when are two entire
types equal? This is where most HoTT
research is.

One of the advantages of seeing types
as spaces is our ability to redefine
equality

Traditional point-wise equality is too-
strict for many purposes

A recent breakthrough in HoTT is the
addition of the Univalence Axiom (UA)

The UA states that if two spaces can
be continuously transformed between
them, then they are equal

These transformations are called
“Isomorphisms”.

For an example of traditional equality
being too strict see these two
monoids:

M1 and M2 are isomorphic, we can
transform them using:

M1 and M2 behave the same in most
situations, but traditionally they are
not be equal

The paper that I surveyed [1] explores
how to define these monoids and other
complex structures so that we can
prove them equal using univalence

This is the resulting structure:

This is a Code for Monoids, it contains
all the monoid data: b is the binary
operator, e is the identity element, and
laws contains the laws for monoids.

This formulation allows us to proof
equality for monoids using the
following proof:

We know that the structures respect
isomorphism, so we can substitute
them and thus they are equal, the
Carrier Type is also equal because of
univalence, so the entire Instance is
equal.

The system in the reference paper
works well and is expandable, further
research needs to be made into seeing
how this definition adapts to other
structures, such as groupoids or
monoids not built on sets.

The implications of proving equality
from isomorphism are great,
including recent research in using a
simpler less optimized
implementation to make proofs about
a faster and more complex
implementation. [2]

We can modify the Code to create a
set with multiple monoid structures,
this is an example with two operators:

This pattern can be repeated to add an
arbitrary number of operators and
identity elements to the set, showing
how the Code system is easily
expandable.

Figure 1: topological visualization of a = b= c

Figure 2: topological visualization of an

isomorphism

[1] Thierry Coquand and Nils Anders Danielsson. Isomorphism is

equality. Indagationes Mathematicae, 24(4):1105–1120, 2013.

[2] Nicolas Tabareau et al. The marriage of univalence and

parametricity. J. ACM, 68(1), jan 2021.

