
 The iroh implementation builds on Rust’s quinn library to 
offer a peer-to-peer messaging API over QUIC, complete 
with built-in asymmetric encryption for agent key pairs 
and peer-discovery support

 The UDP implementation is deliberately kept simple: 
using native Rust networking crates, the code opens a 
pre-defined UDP socket, sends block-sized messages to 
it, and runs a dedicated receiver thread.

 Overview of the Trustchain 
Protocol Implementation

100 Byte payload, 25 second duration, iroh with connection retainment

128 Byte payload, 25 second duration, iroh with connection retainment, 
high workloads

 Protocol fidelit
 Our implementation supports throughput tests but skips the 

exact block format and consensus layer; a full re-
implementation is needed for deeper protocol insights

 Limited testbe
 Experiments run on two devices in a fixed network; multiple 

devices and varied network topologies are required to 
generalize findings

 Benchmarking overhea
 Capturing full timestamps, block structure, and message 

content yields rich data but adds overhead; a leaner metric 
(e.g., counting stored blocks) is faster but sacrifices 
structural validation

 Low repeatabilit
 Manually executing the QUIC-based (iroh) experiments 

restricts the number of runs; an automated test bench is 
needed to scale repetitions

 Code robustnes
 The Rust-based iroh optimization sometimes disconnects 

under heavy load, and the original iroh version fails around 
40 msg/s; improving stability and diagnosing these faults is 
critical.

Research Question
 How can we build a smartphone application which 

implements the core features of the Trustchain protocol
 Given the base implementation of the application, what 

is its throughput performance (that is, the number of 
transactions per second that the app will be able to 
support)?

 Experiments

 Limitations

Throughput Analysis of a Trustchain

Protocol Implementation Author: Tudor Chirilă

t.chirila@student.tudelft.nl

 Overview

 Methodology

Supervisors: Bulat Nasrulin, Johan Pouwelse

100 Byte payload, 25 second duration, iroh with reconnection Prototyp
 Build Trustchain[5] client with P2P framewor
 Connect to peer, attach message, exchange & store block
 Support UDP[6] transpor

 Throughput Test
 Metric: completed blocks stored per ms, after full processin
 Controlled: private Wi-Fi, identical phones/O
 Variables: test duration, message rate[7], payload siz
 Compare QUIC[8] (iroh) vs. UDP under same workloads

 References

 Conclusions
 Research Question 

 Built a smartphone app using the Rust-iroh framework, 
yielding a functional Trustchain prototype

 Implemented block creation, payload attachment, peer 
exchange of signed blocks, and local storage

 Research Question 
 Maintaining a persistent QUIC connection delivered over 

three times the throughput compared to reconnecting on 
each message

 Achieved approximately 28 blocks/s with a 128 B payload at 
29 msg/s. When considering a full block size of minimum 
536B recorded, this corresponds to ~15 KB/s storage 
throughput

 	The simple UDP implementation outperformed the iroh 
version, storing at least 500 blocks/s of 668 B each.

[1]Nakamoto, S. – Bitcoin: A peer-to-peer electronic 
cash system (2008)

[2]Croman et al. – On scaling decentralized 
blockchains, Financial Cryptography (2016)

[3]Wang et al. – SoK: DAG-based blockchain systems 
(2022)

[4]Otte et al. – Trustchain: A sybil-resistant 
scalable blockchain, FGCS (2020)

[5]Pouwelse – Trustchain protocol, IETF draft-01 
(2018)

[6]RFC 768 – User Datagram Protocol (1980)

[7]Nasrulin et al. – Gromit: Benchmarking blockchain 
performance, DAPPs (2022)

[8]RFC 9000 – QUIC: A UDP-Based Multiplexed and Secure 
Transport (2021)

 Context: Bitcoin’s[1] design trades scalability (≈7 TPS, 10 
min blocks)[2] for security; DAG-based protocols[3] like 
Trustchain[4] offer higher throughput and Sybil resistance

 Why Mobile? Smartphones dominate internet access and 
could enable fast, peer-to-peer payments - despite limited 
compute power and mobile testing tools.

The implementation is done 
in the Rust and Kotlin 
languages (for Android 
agents), bridged by the Java 
Native Interface.


