Improving security and efficiency in IoT data management using BC based solutions

TUDelft

1. Background

- Internet of things (IoT)
 - Interconnected network
 - Billions of devices [1]
 - Large variety
 - Resource limited, throughput computation power
- Blockchain (BC)
 - Distributed ledger
 - Immutable
 - Transparent

5. Future work

- Consensus algorithms tailored to the IoT
 - High scalability
 - High throughput
 - Low communication costs
 - Low latency
 - DAG
- Individual IoT device security
 - Individual devices vulnerable

References

[1] S. Sorrel, "The internet of things: Consumer, industrial & public services 2018-2023," jun 2018.
[2] H. Niavis and K. Loupos, "Consenseito: A consensus algorithm for secure and scalable blockchain in the iot context," in Proceedings of the 17th International Con-ference on Availability, Reliability and Security, ARES '22, (New York, NY, USA), Association for Computing Machinery, 2022

[3] Yuzik and D. Makaroff, "Blockchain-based security for heterogeneous iot systems," in Proceedings of the 30th Annual International Conference on Computer Sci- ence and Software Engineering, CASCON '20, (USA), p. 63-72, IBM Corp., 2020 (J), No. 5, Alexabrah, B. Camble and M. Baas, "Service ing area the size of fermione underscience in the size of the size of

[4]. He, S. Alqahtani, R. Gamble, and M. Papa, "Secur- ing over-the-air tot firmware updates using blockchain," COINS '19, (New York, NY, USA), p. 164-717, Association for Computing Machinery, 2019 [5] X. Guo, Q. Guo, M. Liu, Y. Wang, Y. Ma, and B. Yang, "A certificateless consortium blockchain for iots," in 2020 IEE 40th International Conference on Distributed Computing Systems (ICOSC), pp. 945-956, 2020. [6] P. Zeng, X. Wang, L. Dong, X. She, and F. Jiang, "A blockchain scheme based on dag structure security so-lution for ilot," in 2021 IEE 20th International Conference on Torist Scientify and Provide Computing Systems (ICOSC), p. 945-956, 2020.

communications (TrustCom), pp. 935-943, 2021
(7) G. D. Putra, V. Dedeoglu, S. S. Kanhere, R. Jurdak, and A. Ignjatovic, "Trust-based blockchain authorization for ign", "IEET Transactions on Network and Service Man-agement, vol. 18, no. 2, pp. 1646-1658, 2021

Ruben Couwenberg r.c.couwenberg@student.tudelft.nl

2. Research question

Q: How we can improve security and efficiency in IoT data management using BC-based solutions

- How does BC improve IoT data management?
- What are the pros/cons of using BC to improve IoT data management?
- What solutions exist to negate the cons of using BC to improve IoT data management?

6. Conclusion

- BC can improve security and efficiency
- Improvements still needed
- Consensus algorithms of great impact

3. Method and process

- Gathered papers from and supervisor suggested
 - IEEE Xplore
 - ACM Digital Library
- Five surveys
- Six research papers
- Reviewed and compared
- Evaluation metrics
 - Consensus Algorithms
 - Performance
 - Security
 - Privacy

4. Discussion

- Survey omitted performance and consensus algorithms
- Some privacy not included
- Outdated Ethereum
- Positives
 - Fault tolerance
 - Resilience
 - Access control
 - Denial of Service
- Negatives
 - Critical of performance
 - Bandwidth important
 - BC introduces weaknesses

Table 1: (- -) poor, (-) insufficient, (+) sufficient, (++) good, (+++) excellent

Research	Description	Consensus Algorithms	Performance	Security	Privacy	(+) Pros (-) Cons
2022 Niavis et al. [2]	Proposes ConSenseloT, a distributed Pol concensus algorithm that would not impact the performance of the IoT network	PoI	+	++	+	+ Promising concept - Not tested
2020 Yuzik et al. [3]	Implementation, testing and discussion of a proof-of-concept security improving BC implementation for heterogeneous IoT systems.	РоА	++	++	-	+ Proof-of-concept + Thorough background - Based on outdated Ethereum
2019 He et al. [4]	System is proposed for the verification of over the air firm- ware updates using smart contracts.	ETH	++	++	_	+ Proof-of-concept - Limited background - Not extensive
2020 Zhoa et al. [5]	Paper proposing a key-derived controllable lightweight secure certificateless signature algorithm.	РоТ	+++	++	+	+ Tested + Proof - Scalability not treated
2021 Zeng et al. [6]	DAG based BC scheme for IIoT is proposed that is faster, more secure and energy efficient.	DAG	+++	++	+	+ Tested + Thorough
2021 Putra et al. [7]	Proposes an adaptive decentralized IoT access control mecha- nism by using a a permissioned private and public BC.	N/A	++	+	+	+ Tested + Critical - Slower

CSE3000 Research Project

Professor: Mauro Conti Supervisor: Chhagan Lal