
CSE3000 Research Project by Ioana Savu under the supervision of Jesper Cockx, Lucas Escot
a.i.savu-1@student.tudelft.nl, J.G.H.Cockx@tudelft.nl, L.F.B.Escot@tudelft.nl

04 RESULTS

02 PROBLEM
Can we reproduce a verified implementation of the
Ranged-sets Haskell library in Agda using agda2hs?

01 Background
• Haskell is a pure, but partial functional language
• Agda is a total and dependently-typed language

and can be used to prove properties of programs,
we call this verifying

• agda2hs aims to convert Agda to Haskell code
• Ranged-sets library allows programming with sets

of values described as lists of ranges

Practical Verification of Ranged-sets

05 conclusion
• The Ranged-sets library can be translated and

verified in Agda using agda2hs
• Further research is needed in order to simplify

the verification process i.e., identifying tactics
that work in similar situations

03 method
• Add to agda2hs the missing types needed by

the library
• Port Ranged-sets to Agda & check if the partial

functions can become total
• Prove the properties of the library

Preconditions & invariants are specified in the
documentation of the library, but not verified.
By verifying them, we ensure that the functions
behave as expected.

Proving properties

Preconditions

Invariants

Property based testing (QuickCheck)

unsafeRangedSet : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄
→ (rg : List (Range a))
→ ⦃ IsTrue (validRangeList rg) ⦄ → RSet a

RS : (rg : List (Range a))
→ {IsTrue (validRangeList rg)} → RSet a

prop_union :: (DiscreteOrdered a) => RSet a -> RSet a -> a -> Bool
prop_union rs1 rs2 v =

(rs1 -?- v || rs2 -?- v) == ((rs1 -\/- rs2) -?- v)

prop_union : ⦃ o : Ord a ⦄ → ⦃ dio : DiscreteOrdered a ⦄
→ (rs1 rs2 : RSet a) → (v : a)
→ ((rs1 -\/- rs2) -?- v) ≡ (rs1 -?- v || rs2 -?- v)

• Embedded as instance arguments

• Embedded in the constructor as implicit
argument

Agda translation of a
QuickCheck property

