Introduction

- Deep learning has brought great advancements across multiple fields, including for gaze-tracking systems.
- The usage of deep learning also led to vulnerabilities to backdoor attacks e.g. BadNets [1].
- Models trained on these backdoor attacks perform normally on regular inputs, but behave maliciously when an attackerchosen trigger is present in the input.
- While backdoor attacks on Deep Classification Models have been studied, their application to Deep Regression Models remain under-explored.

Research question

How can a BadNets backdoor attack be effectively implemented on a deep regression model designed for gaze-tracking, ensuring the injected backdoor is imperceptible to human observation.

Methodology

- Backdoor Type: BadNets [1]
- **Deep Regression Model:** Convolutional layers
- **Dataset:** MPIIFaceGaze [2]
- **Error Calculation:**

$$\epsilon = \left| \arccos\left(\operatorname{clip}\left(\frac{\mathbf{P} \cdot \mathbf{T}}{\|\mathbf{P}\| \|\mathbf{T}\|}, -1, 1 \right) \right) \cdot \frac{1}{|\mathbf{P}|| \|\mathbf{T}\|} \right|$$

References

018, pp. 273–294.

Invisible Threats: Implementing Imperceptible BadNets Backdoors for Gaze-Tracking Regression Models Daan Bentsnijder - 5257786 d.b.bentsnijder@student.tudelft.nl

Backdoor Triggers

- **Overlay:** Images, shapes or patterns
- **Perturbation:** Addition of blur, noise or filters.
- **Repetition:** Certain pixels or pixel groups of the original image get repeated in the backdoor image

Countermeasures

- The BadNets backdoor attack can be used for malicious purposes.
- Potential backdoors can be eliminated by pruning layers and neurons of the model and fine-tuning the model afterwards [3].

- Benign Model Pattern Filter **Fine-Tuning**

[1] T. Gu, B. Dolan-Gavitt, and S. Garg, "Badnets: Identifying vulnerabilities in the machine learning model supply chain," arXiv preprint arXiv:1708.06733, 2017. [2] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, "Appearance-based gaze estimation in the wild," in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Ju [3] K. Liu, B. Dolan-Gavitt, and S. Garg, "Fine-pruning: Defending against backdooring attacks on deep neural networks," in International symposium on research in attacks, intrusions, a

the model's accuracy and requires a subset of benign input images.

Results TABLE I AVERAGE ERROR IN DEGREES FOR Average Error in De Clean Labels Benign Model Clean Images vs 40% 20% 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 Error in Degrees **Poisoned Images** ນ 80% 60% or 40% 0 0.5 1 1.5 2 2.5 3 3.5 Error in Degrees 35.00% 25,00% 20,00% 15,00% 10,00% 5,00% 0,00%

Conclusions

- the image color.
- perceptibility.

Limitations

ENIGN MODEL	ACTIVATORS Average Error in Degrees				
Poisoned Labels	Backdoor Model	Parameters	Clean	Poisoned	
100.43°			Images	Images	
	Yellow Square	1% of image	2.42°	98.07°	
	-	2% of image	1.09°	0.70°	
	Uniform Noise	$\epsilon = 0.05$	1.72°	0.22°	
		$\epsilon = 0.01$	1.90°	0.11°	
		$\epsilon = 0.005$	1.56°	0.45°	
Benign	Gaussian Blur	kernelsize = 3.	1.53°	0.33°	
Vellow Square (20%)		$\sigma = 0.2$			
= 1000000000000000000000000000000000000		kernelsize = 3.	1.60°	13.75°	
Uniform(2 = 0.001)		$\sigma = 0.1$			
Uniform($\varepsilon = 0.005$)		kernelsize = 5.	1.52°	3.48°	
Gaussian Blur(σ = 0.2, k = 3)		$\sigma = 0.2$			
Border(k = 5)	Extended Border	x = 5	1.16°	6.05°	
Pattern(α = 0.05)		x = 10	2.07°	101.27°	
	Pattern Filter	lpha = 0.01	1.06°	101.68°	
		lpha=0.05	1.10°	0.12°	

TARLE II

	Benign
	Yellow Square(2%)
	 • Uniform(ε = 0.01)
	Uniform($\varepsilon = 0.005$)
	— — Gaussian Blur(σ = 0.2, k = 3)
	Border(k = 5)
	 Pattern(α = 0.05)
4,5 5	

• Triggers with a static color, like the yellow square activator, are dependent on the presence of that color in the image. • Repetitive border trigger is less visible, but too highly depends on

• Perturbation triggers score lowest on average error, but vary on

• Using a filter overlay has an average error similar to a benign model, and is almost fully imperceptible.

• Due to the lack of processing power, there is a limit on backdoor triggers, their parameters and hyper-parameters.

	Supervisor:	Lingyu Du	
n. 2015, pp. 4511–4520. nd defenses, Springer,	Responsible Professor:	Guohao La	