Improving the Generalizability of Deep Learning NILM Algorithms using One-Shot Transfer Learning
Can one-shot transfer learning be leveraged to enhance the performance of a CNN-based NILM algorithm on unseen data?
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*+ Non-intrusive load monitoring (NILM) refers to the process of
disaggregating a power time-series into individual components
that constitute the aggregate signal (figure 1).
NILM was initially introduced by G. Hart [1]
Currentissues [2]:

« Limited generalizability of the algorithm to unseen
households during training.
Inadequate detection of low-energy consuming
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Table 1: The accuracy score in % on an Austin household after

feeding n samples to the transfer learning layer.

Transfer learning
samples

Dishwasher. ON

« This study highlights the potential of one-shot transfer learning to
enhance the generalizability of deep-learning NILM algorithms.

« Further research should be conducted to investigate the relationship
between the data used for one-shot transfer learning, the appliance set,
and the improvement score.
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Figure 1: Graphical illustration of Non-Intrusive Load monitoring
(NILM)
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Figure 2: Graphical representation of how the Convolutional Neural Network (CNN) is extended to be used for one shot transfer learning.
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