
The results align with the findings of [3], confirming 
that SA-PINNs benefit from the self-adaptive 
weights and demonstrate increased performance 
when tested on challenging problems like Viscous 
Burgers Equation. However, while the accuracy 
increases the training times do as well. Full SA-PINN 
implementation took over two times longer to train 
than the baseline PINN. Also, the result show that 
some masks might be worth using without the full

SA-PINN implementation, like the initial conditions 
mask that demonstrated improved performance 
across scenarios when training for 1000 and 10000 
epochs while not increasing the training time as much 
as the full SA-PINN implementation. 



Future research could explore whether these results 
are replicable for other PDEs to assess the 
generalizability of the findings. 

 Conclusions and future work

The results were evaluated based on two key metrics
 Time to train in second
 L2-error given by:

The graphs represent the average across the five runs, 
as well as the standard deviation. The L2-error directly 
translates to the accuracy of the model, while the time 
it took to train shows which configurations are the 
fastest.



These two benchmarks give a good overview of the 
model performance.
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Five different scenarios were trained, for 3 different 
epoch categories (100, 1000, and 10000 epochs). 



Network configuration stays the same between the 
scenarios to ensure robustness of the experiments.

Each model undergoes two stages of optimization, 
first using Adam optimizer, and then L-BFGS. 



Adaptive weights are only updated when training 
with Adam, and they are held constant when training 
with L-BFGS. This is the training setup used by [3].



The PDE the model is trained to predict is the 
Viscous Burgers equation defined as follows:








For each scenario, five independent models are 
trained to ensure robustness and reduce variability.
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 Research Question
Which loss components contribute most 
significantly to the solution accuracy and how do 
the adaptive weights affect this contribution?

 SA-PINN Main Idea
Self-Adaptive Physics-Informed Neural Networks (SA-
PINNs) introduced by [3] aim to solve the problem with 
convergence when predicting stiff nonlinear equations. 



SA-PINNs applies fully trainable adaptation weight mask 
to each training point, which allows the network to 
autonomously focus on challenging regions of the 
solution. This mask is a core innovation of SA-PINNs and 
it works by introducing adaptation weights that are 
updated alongside the neural network parameters 
during training.



Here is how the loss function looks like for SA-PINNs:




Where
                  is the error caused by not satisfying the PD
         is the error caused by not satisfying the 

boundary condition
         is the error caused by not satisfying the 

initial condition  



The self-adaptation weights are essentially vectors with 
dimensions equal to the number of points in the training 
set.



The adaptive weights are updated using gradient ascent 
and the neural network weights are updated using 
standard gradient descent. 





 PINN Introduction
Physics-Informed Neural Networks (PINNs) are a 
significant advancement in solving partial differential 
equations (PDEs) by incorporating physical laws directly 
into the neural network architecture [1]. Proposed by [2] 
they aim to minimize the error of the PDE, initial, and 
boundary conditions simultaneously, embedding domain 
knowledge into the learning process [3].



Here is how a standard PINN loss function looks like:





However, they are known to struggle when modeling 
PDEs that are “stiff”, that means, with solutions 
characterized by sharp spatial transitions or fast time 
evolution [4].


