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» Zernike and Gabor-Zernike both viable
» Zernike 1s better under rotation, Gabor-

« Historians use watermarks in paper to relate documents to . Two combined techniques: Gabor-Zernike and Gabor-

each other. Legendre

 Searching for similar watermarks by hand 1s time-consuming. . Instead of mean and standard deviation, Zernike and

« A prototype system was created to automate the search [1].

Legendre moments Zernike under shearing

. Further improvement 1s still needed. . For low-quality datasets, texture features

. 146 1mages: 81 training, 65 evaluation are better

Research Question

. , . 3 synthetic datasets: rotated, sheared, both
What image features are the most effective for

Figure 3: Original eagle
watermark (top), after rotation

« Apply technique, then rank with Euclidean distance  Bessel-Fourier and Tchebichef are

retrieving similar, binarized watermarks from a set of historical (bottom right), after shearing

 Precision: percentage retrieved that 1s relevant

(bottom left). Figure created by supposed to to iIIlpI’OV@ on Zernike and

6)
documents?’ the author.

. . « Recall: percentage of relevant images retrieved
« What types of features are relevant for recognition of binarized watermarks?

Legendre, but don’t for binarized images

Maximum moment order

« Mean Average Precision: area under precision-recall - Moments with orders higher than ~12 don’t

« Which specific image features may perform well, and how do they actually
perform at watermark retrieval?

« What impact do the parameters of the techniques have, and how can they be
optimized?

« How can different techniques be combined to further improve performance of
the system?

Methodology

There are two relevant types of image
features.

an 1mage 1n 1ts entirety.

Figure 1: Image after various
Gabor filters. Johndoel 54, Public
domain, via Wikimedia Commons
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Figure 2: First 21 Zernike

polynomials. Nschloe, CC BY-SA
4.0, via Wikimedia Commons

- For example, Gabor filters model
mammalian eye cells by 1solating
frequency and orientation information.

« Gabor features: Each 1mage 1s filtered,
and the mean and standard deviations
are used as a feature vector.

- Image moments compare the image
to many “base 1images” based on
different polynomial orders

 Cartesian: simple to compute, but sensitive to rotation

 Polar: Rotation invariance, but more complex to compute

 Zernike and Legendre moments first suggested in 1980 [2]

 Bessel-Fourier and Tchebichef moments improve on them [3, 4]

curve

« Preliminary experiment: decide on moment orders

Results

Precision-recall for basic images
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Precision-recall for sheared images
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Precision-recall for rotated images
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Precision-recall for rot. & sheared images
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Figure 4: Precision-recall curves for each technique when the images are unchanged, sheared, rotated, and

0.7 0.8

0.9 1.0

both sheared and rotated. Precision and recall both range from 0 to 1 and are dimensionless.

Gabor-Zernike

Gabor-Legendre

improve performance
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