

Introduction

- No public **5G** packet **datasets**; privacy/proprietary limits.
- Existing tools (e.g., TRex) \Rightarrow constant-rate, miss real timing.
- Existing work: flow-level, **not packet-level** [1].

Related Work

- Bytewise synthesis: **PAC-GAN**, **PacketCGAN** & **PcapGAN** ⇔ GANs.
- PAC-GAN: novel nibble encoding, high validity [2].
- Tabular \Rightarrow state-of-the-art choices: **TabularARGN**, **TVAE**, **CTGAN**, **REaLTabFormer**.
- TabularARGN: **best performance** on diverse datasets [3].
- Compare key models: PAC-GAN (novel direct) vs TabularARGN (top tabular) [3].

Research Question

How can **machine learning techniques** be used to generate **synthetic 5G** network **traffic**? What ML techniques are most suitable for this task?

- 1. What are the existing ML-based methods for synthetic traffic generation?
- 2. How do the methods compare in terms of fidelity and ease of integration?

Dataset and Preprocessing

- 2.68M packets from simulation 5G network [4].
- **90/10** train/test **split**: 2.41M/0.26M.
- Parsed with Scapy to table; omitted low-variance & variable length fields.

TabularARGN

- Auto-regressive NN for tables.
- Predicts fields from each other \Rightarrow capture inter-column relations.
- Implementation from authors [3].

Synthetic 5G Traffic Generation: A Machine Learning Approach

Karsten Cedric van der Deijl¹ **Supervisors:** Nitinder Mohan¹, Marco Colocrese¹

¹Delft University of Technology

Validity

Fractional **Protocol-Compliance**

Marginal Distribution

- Univariate: distribution match
- JSD: similar category distribution.
- **EMD**: similar numeric value distributions.

Joint Distribution

- **Bivariate**: pairwise field relationships preservation.
- Coverage: measures missing real patterns
- **Precision**: measures sample realism
- **Recall**: measures captured diversity
- **Density**: measures clustering in real regions

Results

eaders	+	timed	lelta.

PAC-GAN TabularARGN Metric 96.89% 100.00% Validity ↑ 0.0121 0.0191 EMD ↓ 0.2281 JSD ↓ 0.2404 # Parameter 0.8215 Univariate ↑ 0.7069 Size on Disl Bi-Variate ↑ 0.6651 0.4814 Generation for 500K 0.1786 0.0015 Coverage ↑ Recall ↑ 0.9843 0.9986 Training tim 0.2316 0.0027 Density ↑ 0.5318 0.0073 Precision ↑

(a) Evaluation Results

 Table 1. Evaluation Results (1a) & Model Complexities (1b), for PAC-GAN & TabularARGN

- Both models show good validity; TabularARGN nearly guarantees protocol adherence.
- Both capture marginal distributions well; Slightly better PAC-GAN.
- PAC-GAN balances joint metrics \Rightarrow diverse and realistic samples.
- PAC-GAN captures inter-field dependencies.
- TabularARGN misses inter-field dependencies \Rightarrow less realistic outputs.

Contributions

- Developed and applied expansive evaluation framework.
- Compared **Tabular** vs **direct-GAN** approach.
- Introduced inter-packet timing modeling.

Conclusion and Discussion

- Deep generative models: **high-fidelity**, protocol-valid 5G headers.
- PAC-GAN: best trade-off, realistic & valid.
- Future: incorporate more models and protocol layers, explore privacy preservation.

	Refe	reno	es
[1]	Adrien Schoen, Gregory Blanc, Pierre-Francois Gimenez, Yufei Han, Frédéric		ISSN: 2644-3163.
[1]	Majorczyk, and Ludovic Me. A Tale of Two Methods: Unveiling the Limitations of GAN and the Rise of Bayesian Networks for Synthetic Network Traffic Generation. In 2024 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), pages 273–286, July 2024.	[3]	Paul Tiwald, Ivona I Scriminaci, and Mic TabularARGN: A Fle High-Fidelity Synth arXiv:2501.12012
	ISSN: 2768-0657.	[4]	Cooper Coldwell, [
[2]	Adriel Cheng. PAC-GAN: Packet Generation of Network Traffic using Generative Adversarial Networks.		Petersen, Damon S Machine Learning S In 2022 IEEE Globe
	In 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pages 0728–0734, October 2019,	[5]	Haris Iqbal. HarisIqbal88/PlotN

	PAC-GAN	TabularARGN
ers	7.87M	0.47M
k	30.09MiB	5.52 MiB
time		
	2.84s	3.38s
ne	~5hrs	~14min

(b) Model Complexity

Krchova, Andrey Sidorenko, Mariana Vargas Vieyra, Mario hael Platzer

exible and Efficient Auto-Regressive Framework for Generating etic Data, February 2025.

Denver Conger, Edward Goodell, Brendan Jacobson, Bryton pencer, Matthew Anderson, and Matthew Sgambati. G Attack Detection in Programmable Logic.

com Workshops (GC Wkshps), pages 1365–1370, 2022.

leuralNet v1.0.0. December 2018.

K.C.vanderDeijl@student.tudelft.nl