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Introduction

No public 5G packet datasets; privacy/proprietary limits.

Existing tools (e.g., TRex) ⇒ constant-rate, miss real timing.

Existing work: flow-level, not packet-level [1].

RelatedWork

Bytewise synthesis: PAC-GAN, PacketCGAN & PcapGAN ⇔ GANs.

PAC-GAN: novel nibble encoding, high validity [2].

Tabular ⇒ state-of-the-art choices: TabularARGN, TVAE, CTGAN, REaLTabFormer.

TabularARGN: best performance on diverse datasets [3].

Compare key models: PAC-GAN (novel direct) vs TabularARGN (top tabular) [3].

Research Question

How can machine learning techniques be used to generate synthetic 5G network traffic?

What ML techniques are most suitable for this task?

1. What are the existing ML-based methods for synthetic traffic generation?

2. How do the methods compare in terms of fidelity and ease of integration?

Dataset and Preprocessing

2.68M packets from simulation 5G network [4].

90/10 train/test split: 2.41M/0.26M.

Parsed with Scapy to table; omitted low-variance & variable length fields.

TabularARGN

Auto-regressive NN for tables.

Predicts fields from each other ⇒ capture inter-column relations.

Implementation from authors [3].

PAC-GAN

Convolutional GAN, nibble-matrix packet encoding.

Adversarial training with Wasserstein loss.

TensorFlow implementation, adapted from original; focus on headers + timedelta.
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Figure 1. PAC-GAN Model Architecture
Created using PlotNeuralNet [5]

Evaluation Metrics

Validity

Fractional Protocol-Compliance

Marginal Distribution

Univariate: distribution match

JSD: similar category distribution.

EMD: similar numeric value

distributions.

Joint Distribution

Bivariate: pairwise field relationships

preservation.

Coverage: measures missing real

patterns

Precision: measures sample realism

Recall: measures captured diversity

Density: measures clustering in real

regions

Results

Metric PAC-GAN TabularARGN

Validity ↑ 96.89% 100.00%

EMD ↓ 0.0191 0.0121

JSD ↓ 0.2281 0.2404

Univariate ↑ 0.8215 0.7069

Bi-Variate ↑ 0.6651 0.4814

Coverage ↑ 0.1786 0.0015

Recall ↑ 0.9843 0.9986

Density ↑ 0.2316 0.0027

Precision ↑ 0.5318 0.0073

(a) Evaluation Results

PAC-GAN TabularARGN

# Parameters 7.87M 0.47M

Size on Disk 30.09MiB 5.52 MiB

Generation time

for 500K 2.84s 3.38s

Training time ~5hrs ~14min

(b) Model Complexity

Table 1. Evaluation Results (1a) & Model Complexities (1b), for PAC-GAN & TabularARGN

Both models show good validity; TabularARGN nearly guarantees protocol

adherence.

Both capture marginal distributions well; Slightly better PAC-GAN.

PAC-GAN balances joint metrics ⇒ diverse and realistic samples.

PAC-GAN captures inter-field dependencies.

TabularARGN misses inter-field dependencies ⇒ less realistic outputs.

Contributions

Developed and applied expansive evaluation framework.

Compared Tabular vs direct-GAN approach.

Introduced inter-packet timing modeling.

Conclusion and Discussion

Deep generative models: high-fidelity, protocol-valid 5G headers.

PAC-GAN: best trade-off, realistic & valid.

Future: incorporate more models and protocol layers, explore privacy preservation.
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