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Introduction / Background

Offline RL:
• No  environment interaction [1].

• Learns optimal policy from a dataset [1].

• Important when environment interaction is 
too costly or expensive.

Multi-Task RL:
• Agent learns from multiple tasks.

• Single-task methods often fail in multi-task 
settings [2].

Limitations

• Only one environment 
tested, so results may not 
hold for other 
environments.

• Hardware limitations have 
restricted hyperparameter 
tuning.

• Only five seeds were used, 
so the results of SAC+BC 
are not stable with mixed 
data.
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Experimental Setup

1.     Create Datasets
• Quality: Optimal, Suboptimal, Mixed.
• Size: 40, 80, 200, 400 Episodes/Tasks.

2.     Implement Algorithms
• Behavioral Cloning (BC).
• Soft Actor-Critic (SAC).
• SAC+BC → Add BC term to SAC.

3. Hyperparameter Tuning with Optuna using a 
Tree-Structured Parzen Estimator (TPE) to 
sample more of the promising parameters.

4. Training & Evaluation of BC, SAC, and 
SAC+BC with up to 50k training steps.

5 Conclusio
nsNo conclusions yet

Conclusion

• Marginal generalization gap 
between BC and SAC+BC on 
optimal and suboptimal data 
but gap is not clear on mixed 
data.

• Study suggest increasing data 
size improves generalization of 
SAC+BC if and only if this 
increases diversity.

• SAC underperforms in an 
offline setting.

5 Results

• SAC+BC generalizes comparable to BC on 
optimal and suboptimal data.

• SAC+BC generalizes best when trained on 
higher quality (optimal) data.

• SAC+BC performs with high volatility when 
trained on mixed data.

• SAC mostly achieves mean rewards below 
0.25.

• Increasing suboptimal and mixed data size 
enhances performance of SAC+BC.

• Increasing optimal data size had no impact on 
SAC+BC.
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Research Questions
• Can SAC combined with BC effectively 

generalize to new tasks within a multi-task 
RL environment?

• What characteristics of the offline dataset 
are critical for the success or failure of 
SAC+BC in such settings?
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Environment

• Discrete Action Space.

• 40 Tasks per 
Configuration.

• Task Characteristics:
1. Agent Location
2. Goal Location
3. Topology
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Figure: 4-Room Grid [3]
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