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1. INTRODUCTION

Learning curves (LC) depict how model performance evolves as the training set size
increases.
They serve as a tool for estimating the training time and costs associated with machine
learning models.
Terminology:
e Anchor: A point on the learning curve that defines the correlation between training
size and model error.
e Y-distance: vertical separation or difference in the Y-coordinate values between two
anchor points on a graph, along the Y-axis

2. RESEARCH QUESTION

How many learning curves are nonmonotone and what influences this?

5. LIMITATIONS
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6. CONCLUSIONS

e Sensitive against noise data, the threshold is still  Y-distances can be used to judge
set too low

0.80 1

Accuracy
=]
=)
o

0.76

0.74

monotonicity of learning curves, the

proposed algorithm  providing high
accuracy

e O(N) complexity (N - nr. of anchor points),
fast and reliable enough to be able to
conduct large scale analysis of many
learning curves

e Results indicate that there might be little
to no correlation between occurrences
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e Fails to identify peaking on almost constant
learning curves with sudden drops in
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Future work:

e Run the proposed algorithm over the
entire LCDB database

e Optimize the existing threshold or try

using standard deviation as threshold

[1] Felix Mohr et al. “LCDB 1.0: An extensive
learning curves database for classification tasks”.
In: Machine Learning and Knowledge Discovery in
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3. METHODOLOGY 1e—5+9.999e—1 Plot of learning curve
1.Create an algorithm that can identify non-monotonicity in learning curves, by |
9.5 4
observing the degree of monotonicity violation in the anchor points.
2.Evaluate the algorithm : g ]
e Accuracy testing using artificial LCs; T es
e Significance Test: how significant is the non-monotonicity in each learning curve; 50
3. Compare performance to another algorithm .
4. Using this metric, evaluate non-monotonicity on a subset of the Learning Curve ° -
Database (LCDB) [1]
4. RESULTS
e Algorithm correctly identified most non-monotone learning curves * Majority of non-monotone learning curves encounter
e Stochastic Gradient Descent (SGD) learner has the biggest ratio of at most 2 non-monotone intervals on the curve.

non-monotone learning curves
e 83 non-monotone learning curves (15.63% out of the total) have a
drop in performance right at the very end.

e The Stochastic Gradient Descent (SGD) learner has
the most volatile

learning curves (displays the

behavior of peaking the most)
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Table 1: Accuracy Tesi Resulis. The brackeis describe the percenit-
anaH| age of correctly classificd curves from the total number of mono-
lonic o non-maonolonic leaming curves, respectively.
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e Neural network models and SGD display the
most non-monotone behavior, also being
prone to display peaking behavior

e Tree-like learners show significantly less non-
monotonic behaviour than the rest
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