Improving accuracy of sound reflection estimation using neural networks

Author: Ekko Scholtens (E.Scholtens-1 @student.tudelft.nl)

Supervisor(s): Jorge Martinez Castaneda (j.a.martinezcastaneda@tudelft.nl), Elmar Eisemann (e.eisemann@tudelft.nl)

1) Introduction

The acoustics of a room can be divided into three main parts as shown in Figure 1

Direct sound, the sound coming directly from the source.
Early reflections, which are the first reflected sounds by, for example, walls.
And late reflections, the reverberation of a room affects how spacious the room feels.

Early reflections in a small room can cause unwanted effects. Such as the creation of phantom images as illustrated in Figure 2. There are problematic as there are now 3 sources instead of the one.

Filtering all reflections is not preferred. Detection where the early reflections come from can help with filtering only the problematic ones.

Figure 1: Real RIR behaviour [1]

Figure 2: phantom images

2) Background

A naive approach could be to try and match reflections to each other as depicted in Figure 3.
This can be reduced to a "maximum independent set" problem, which is a NP-Hard problem.

Other solutions are in general:

Expensive
Designed for large music halls
Require 10+ numbers of microphones

A neural network approach as described by Bologni [2]:

- Only used two microphones and a trained neural network to estimate direction
But it does have issues with differentiating between front and back

3) Research question

This leads us to the following questions:
Can the addition of a third microphone to the neural network reduce the front-back ambiguity?
Can the addition of a third microphone to the neural network improve accuracy in detecting reflections in a room?

4) Method

We generate the data using the same constraints as Bologni et al.[2] and simulated the microphone array as an array of three subcardioid microphones with an inter microphone distance of 10 cm .

The dataset is generated using the image source model and pyroomacoustics it consist of:
9 Rooms with sizes from 2×2 to 8×8 meters For each we generate a number of source and receiver location
For each receiver position we generate 150 random rotations

We reimplemented the network as described in the paper by Bologni et al. [2].

We made two versions of the neural network:

A the two channel version to compare against the results Bologni et al. [2] found.
And a three channel version where we added a third microphone.

5) Results

In Table 1 shows that we increased the amount of detected sourced by adding a third microphone

	Bologni et al.	two-channel	three-channel	
Detected	49%	43%	58%	
sources	-	25%	18%	
Front-back	-	Table 1: Results comparison		

In Figure 4 we show a comparison of the angular error of the two(a) versus three(b) microphones. It shows that adding a third microphone, leads to a smaller standard deviation of 44.3 degrees compared against 51.5 degrees.

6) Conclusion and Future work

The results show that adding a third microphone can significantly improve the accuracy by detecting more sources and reduces the front-back ambiguity.

Figure 5 shows a single sample comparison between the expected and the predicted output. It shows that the predicted result could be used to find reflections in a room, and in turn find place where to place sound absorption panels

Future work:

- Evaluate the proposed method on real-world rooms.

Train and evaluate on more complex rooms shapes and acoustic properties - Change the neural network to only output the angles of the reflections.

References

[1] Cecchi, Stefania, Alberto Carini, and Sascha Spors. "Room response equalization—A review." Applied Sciences 8.1 (2017): 16 [2] Bologni, Giovanni. "Room geometry estimation from stereo recordings using neural networks." (2020).

