
Dilbert by Scott Adams, dilbert.com
PHD Comics by Jorge Cham, phdcomics.com.

References:
[1] Jaccard index. May 2021.URL: https : / / en .
wikipedia .org/wiki/Jaccardindex.
[2] Kumiko. URL:
https://github.com/njean42/kumiko/
[3] Li Yujian and Liu Bo. “A normalized
Levenshtein distance metric”. In: IEEE
transactions on pattern analysis and machine
intelligence 29.6 (2007), pp. 1091–1095.
[4] Tesseract. URL: https : / / github . com /
tesseract - ocr / tesseract.
[5] Google Vision API. URL: https:// cloud . google
. com/ vision/docs/ocr.
Comic strips from

Bachelor thesis for:
BSc Computer Science & Engineering @ TU Delft

Fig 3. The steps of the panel extraction procedure. From left: binary
comic image - outermost contours - filled contours - noise removed -
proposed panel bounding box.

Fig 4. Example of bounding box clustering.
The original bounding boxes (left) and the
identified clusters (right)

Fig 5. Comparison of text extraction performance
between baseline (out-of-the-box OCR) and best
results of DCP (with pre- and post- processing).

Success rate

Kumiko (baseline)
DCP (our method)

Time per
image

82%
89%

strip

Table 1. Results of the panel extraction evaluation.:
success rates on panel and strip levels and the
average processing time per comic. Tested on a
dataset of 1100 manually marked panels.

Method

93%
97%

656ms
1.5ms

panel

Exper-
iment

Web scraping performed flawlessly, downloading all comics at a high pace.
Panel extraction algorithm detected 97% of the panels correctly,
outperforming the baseline approach in terms of both accuracy and speed.
Adding segmentation, pre- and post-processing steps to the OCR pipeline
decreased the error 7 times compared to the out-of-the-box OCR.
Up-scaling the input image had a positive impact on performance, but
binarization did not
Clustering-based output ordering reduced the error by 25%, but the
autocorrect step had a negative impact, mostly due to comics containing
onomatopeias and exclamations, that are not present in dictionaries.
Overall the pipeline processed most comics correctly, but a noticeable
amount of errors still appeared, mainly at the text extraction stage.

Fig 1. Text-image pair creation. Strips need to be downloaded and divided into panels, the dialogues need to be transcribed.

comic illustration synthesis
face recognition on comic characters
humor detection in comic dialogues
automated comic translation

Comic illustration-transcription pairs form an interesting dataset for tasks such as:

Challenge: Dataset creation becomes a bottleneck: to get illustrations with text, each comic strip has to be divided into
panels and transcribed. Not feasible to do it manually on a large scale.

Web scraper:
Successfully scraped 28000 comics
149ms per comic on average

Calculate Intersection over Union [1] between detected and
ground-truth, success if at least 90% overlap
Compared with baseline: Kumiko [2] comic cutter, see Table 1

Calculate Normalized Levenshtein Distance [3] between true and
detected transcriptions
Evaluate the impact of adding pre- and post-processing steps,
finding the best combination
Test with Tesseract [4] and Cloud Vision API [5]
results presented in Table 2 and Figure 5 obtained using Vision API

Experiments on three comic series: Dilbert, PHD Comics, Garfield
1.

 2. Panel extractor:

 3. Text extractor:

Pre-processing: up-scaling, binarization
Post-processing: clustering-based text ordering and output autocorrect

1. Web scraper: automatically download all the images
2. Panel extractor: segment the image into panels
3. Text extractor: extract the text using OCR with additional processing:

Lydia Chen & Zilong Zhao

Maciej Styczeń
m.styczen@student.tudelft.nl

under supervision of:Automated Text-Image Comic Dataset Construction

Fig 2. Automated dataset creation pipeline.

III. Experiments & results

IV. Discussion & conclusions

II. Method

I. Introduction & problem statement

Solution: Propose an automated text-image comic Dataset Construction Pipeline (DCP), consisting of 3 stages:

Post-processing
cluster

Pre-processing

#1
#2
#3
#4
#5
#6

upscale binarize autocorrect
Avg.
error

Segmen-
tation

Table 2. Results of evaluating pre- and post- processing techniques for
text extraction. Error represented by normalized Levenshtein distance.

0.526
0.105
0.102
0.103
0.075
0.098

