An Empirical Analysis of Entropy Search in Batch Bayesian Optimisation

Author: Petre-Alexandru Hautelman (p.a.hautelman-1@student.tudelft.nl)

Introduction

Batch Bayesian Optimisation with Classical Methods:

- Probability of Improvement, Expected Improvement, Upper Confidence Bound
- can be applied to batch using Markov Chain Monte Carlo methods
- selection set is populated sequentially

$$lpha_{PI-MCMC}(x|\{x_{q'}\}_{q'=1}^q) = \int_{\mathcal{X}^q} [lpha_{PI}(x|D_n\cup\{x_{q'},y_{q'}\}_{q'=1}^q) \ (\{y_{q'}\}_{q'=1}^q|D_n,\{x_{q'}\}_{q'=1}^q) dy_1 . . \, dy_q$$

double greedy, myopic selection

Entropy Search methods:

- non-greedy by design
- considers information-theoretic concepts: information gain, information entropy

$$lpha_{ES}(x) = H[p(x^*|D_n)] - E_{p(y|D_n,x)}[H(p(x^*|D_n \cup \{x,y\}))]$$
 (

easily applied to batch

$$lpha(\{x_q\}_{q=1}^Q) = \sum_{q=1}^Q lpha(x_q|\{x_q'\}_{q'=1}^q)$$

Predictive Entropy Search (PES) [1]:

derived from equation (1)

$$lpha_{PES}(x) = H[p(y|D_n,x)] - \mathbb{E}_{p(x^*|D_n)}[H(p(y|D_n,x,x^*))]$$

- compute the change in the entropy of the predictive distribution at the optimum's position
- analytically tractable

Max-Value Entropy Search (MES) [2]:

• considers entropy over maximum function value

$$lpha_{MES}(x) = H[p(y|D_n,x)] - \mathbb{E}_{p(y^*|D_n)}[H(p(y|x,D_n,y^*))]$$

- marginalized over sampled maximum values
- robust and efficient implementation

Joint Entropy Search (JES) [3]:

combines ideas from PES and JES

$$[lpha_{JES}(x) = H[p(y|D_n,x)] - \mathbb{E}_{p(x^*,y^*|D_n)}[H(p(y|D_n \cup (x^*,y^*),x,y^*))]$$

Literature gap:

- systematic study on the performance of PES, MES, JES in parallel optimisation across various environment settings
- batch sizes, function dimensions, noise levels, types of objective functions

Research question

How do Entropy Search algorithms perform under various environment specifications, and what are the factors influencing their performance?

3

Batch sizes (q): {2, 5, 10, 25}

objective function

Noise levels: {0%, 5%, 10%, 20%, 40%} percentage of range of values of

Input dimensions (D): {2, 5, 10, 25, 50}

Function shapes:

- unimodal: Easom, Zakharov, Sum of Different Powers
- multimodal: Griewank, Ackley, Schwefel

Figure 2: Performance of acquisition functions in high-dimensional unimodal function after 50 iterations

Figure 3: Ackley run

5

2

Explore more complex scenarios:

- input-dependant noise
- misspecified environments
- multi-objective optimisation

Responsible Professor: Matthijs Spaan Supervisor: Joery de Vries

Methodology

Fractional Factorial Design:

- used to assemble the testing configurations
- exposes information about the most important features of the studied problem
- 26 testing environments

Metrics:

- simple regret
- cumulative regret

Algorithms:

- qPES, qMES, qJES as implemented in BOTorch
- random and gEI
- results averaged over 5 runs

Results

ES has better performance for batch BO

Noise is the most influential parameter

• especially in high-dimensional spaces

Increased efficiency for unimodal functions with discernable slope

• optimisation failed for Easom, which has a small optimum area surrounded by a flat outer region

qJES is most robust to greater input dimensions

qPES also looks promising pending further testing

Figure 1: 2-dimensional representation of the functions used for evaluation

Function	Average runtime (s)
qEI	1.14
qPES	13.62
qMES	3.13
qJES	24.95

Figure 3: Schwefel run

References: [1] Jose Herńandez, Matthew Hoffman, and Zoubin Ghahramani. Predictive entropy search for efficient global optimization of black-box functions.

[2] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient bayesian optimization

[3] Carl Hvarfner, Frank Hutter, and Luigi Nardi. Joint entropy search for maximally-informed bayesian optimization.

Future work

Different metrics: inference regret

Real-World Benchmarking

Table 1: Average runtime of studied algorithms. Note that qPES was run with GPU acceleration

Figure 4: Griewank run