
[1] Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe,
M., Melton, H., & Noble, J. (2010). The Qualitas Corpus: A
Curated Collection of Java Code for Empirical Studies.
APSEC, 336–345
[2] Dietrich, J., Schole, H., Sui, L., & Tempero, E. (2017).
XCorpus - An executable Corpus of Java Programs.
JOURNAL OF OBJECT TECHNOLOGY, 16(4).
[3] Benelallam, A., Harrand, N., Soto-Valero, C., Baudry, B.,
& Barais, O. (2019). The Maven Dependency Graph: A
Temporal Graph-Based Representation of Maven Central.
2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR), 344–348.

Related literature

MethodologyObjective
Construct a method to create a relevant,
available and self-contained core, using
sub-questions about:

Library usage count
Libraries only referenced by other
packages of the same developers
A usage threshold filter

Introduction

The Maven ecosystem is cluttered. 
We extract the pillars in the community such that:

Qualitative analysis can be performed on it, so developers
have quality guarantees about their dependencies.
Future researchers can reproduce and adapt this m ethod to
their use case, using the information in this paper.

Can we extract a relevant, available, and
self-contained core of the Maven ecosytem?

Author

Mathijs van der Schoot

Affiliations

TU Delft Software Engineering Research
Group 

Supervisors

Supervisor & Responsible Professor: 
Dr. Ing. Sebastian Proksch

Construct a core using a pipeline:
Maven-explorer: traverses Maven Central
indices & downloads packages
Maven Dependency Plugin: constructs a
list of dependencies for every package
Graph: Use the lists to create a graph
structure, and analyse it

Conclusion
Adapt the pipeline per use-case
A fully self-contained core is usually not
optimal
Most packages in the Maven ecosystem are
unused, adapt the usage threshold filter
accordingly

Results

85% of libraries are not used by anyone
except their own developers.

3.3% of the libraries account for two-thirds
of all dependencies.

Analysis

This paper explores the nuances involved in the creation of a core:
Dependency types?
Dependency transitivity? And with varying types?
Multiple versions of the same library?
What does it mean to be self-contained?

Library C version 2 does not pass the filter
Library B is now not self-contained anymore
And what about library A?
It depends on library C version 1, not 2

What usage threshold is optimal for a particular use-case?
Library A and B pass a usage threshold
filter. Library C version 1 does too, but
version 2 does not. How to tackle this?

How the data set size is reduced by a
usage threshold filter.

Extracting the pillars of the community, and their dependencies.


