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d.kazemaks@student.tudelft.nl 1. Introduction 2. Background

« Indoor localization can have a multitude of use cases « Indoor localization methods can be split into two
e Supervisor: Qun Song o Navigating office spaces or museums broad categories
o Locating patients within a hospital o Infrastructure-dependant
o Navigating robotic units within a building [1] = WiFi
= Bluetooth

« GPS Is the most widely used method for localization but = FM-based

I m p rOVi n g I n d OO r LOca I izqtio n underperforms indoors due to signal blocking [2] o Infrastructure-free

= Barometric pressure patterns

by FUSi n g ACtive ACOUStic . Many indoor localization approaches exist, but they » Geomagnetism

underperform under certain conditions = Acoustic (Passive and Active)

e o Sp=29 » changing room environment [3]
LOcat I o n se n SI n g a n d WI FI o reliance on infrastructure [4] « There are multiple ways that classifiers can be fused

together to improve accuracy

o ®
Lcca I Izat I o n « A combination of localization methods enables more o Weighted averaging

unique feature extraction from the environment o Multi-step localization
- Ensemble stacking

Confusion matrix, Confusion matrix,
Acoustic localization Wifi localization

3. Objective 5. Experimental setup
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Combining active acoustic - The measurements were taken in the pulse: 1stfloor-kitchen ' pulse: 1t floorkitcher

- A small amount of human traffic obtained from 3 different train-test splits

« Implement acoustic
ocalization according to

RoomRecognize [3] 6. ReSU |'tS

« Implement WiFi localization by

. : . . o Figure 2: Confusion matrices of individual classifiers
using received signal strength - Accuracies of all classifiers and I
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(RSSI) as fingerprints combinations can be seen in Figure 1
« Fusing the localization methods « Confusion matrices of individual
together with weighted classifiers can be seen in Figure 2 and | . | |
| Confusion matrix, Confusion matrix, Confusion matrix,
averaging, two-step can be compared to combined 2-step localization | e | R e
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certain classification errors
« Combinations can introduce completely
new misclassification errors ee: behing.bathroon
« The correct label was almost always pulse: locker-2079
present in the top 3 predictions Figure 3: Confusion pulse:map
matrices of

combined classifiers
—.
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« It is possible to improve indoor localization
accuracy by combining active acoustic
sensing and WiFi localization

« Combined classifier misclassification tends to
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7. Conclusion
and Future work
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