
LLMs have advanced NLP and demonstrated remarkable capabilities in tasks like language

generation and program repair. Effective utilization of LLMs requires prompt engineering and an

understanding of their limitations. LLMs also offer potential in education for enriching learning

experiences and developing computational thinking skills. This paper investigates leveraging NLP

and prompt engineering to generate successful programming solutions and integrate them into the

educational environment.

01 Introduction

The selection process for this systematic literature review involved using Google Scholar to search

for papers relevant to the 2 sub-topics. The search queries and filters were applied to retrieve

papers related to natural language processing (NLP), large language models (LLMs), program

synthesis, and education. The PRISMA flow chart was used to visualize the record selection

process. Inclusion criteria were established based on topic relevance, language (English), and

publication date (2020 to present). Papers that met the inclusion criteria were analyzed by

examining their titles, abstracts, and references, and if necessary, the full paper. Data extraction,

quality assessment, synthesis of findings, and interpretation were conducted to analyze the

selected papers and draw meaningful conclusions.

03 Methodology

The study has validity threats due to time

limitations, limited sources, language bias,

omission of Google's Bard, and potential biases in

paper retrieval. The author's lack of expertise may

also impact paper selection

05 Limitations

The study compares the architectures of BERT

and ChatGPT, highlighting their respective

strengths and suitability for different tasks.

Prompt engineering techniques are explored to

improve LLMs' responses, considering factors

such as prompt length, complexity, context, and

constraints. Zero-shot and few-shot prompting

methods are discussed, with the latter shown to

enhance model performance. NLP techniques

using LLMs show promise in pair programming,

code generation, explanations, and programming

language learning. Familiarity with LLM syntax and

providing comprehensive information are crucial

for desired outputs. LLMs are reliable in detecting

errors but may struggle with generating error-free

code. The ease of obtaining information through

LLMs can hinder critical thinking, emphasizing the

need to use them as learning tools rather than

substitutes for human expertise. Limitations

include interpretability, biases, brittleness, and

hallucinations. The training process relies on code

from open-source projects, which may contain

security vulnerabilities.

06 Conclusion

Author: Alexandra ioana Neagu

Email: A.I.Neagu@student.tudelft.nl

Supervisors: Fenia Aivaloglou, Xiaoling Zhang

Authors

Technische Universiteit Delft

Affiliations

How can large language
models and prompt
engineering be leveraged in
Computer Science education?

What prompt engineering techniques are used to support problem solvers to

modify the problem description successfully?

What is the potential use of natural language processing (NLP) techniques in

teaching and learning practices that leverage large language models (LLMs)?

This systematic literature review investigates:

Prompt engineering is crucial for LLMs'

accuracy, coherence, and context

appropriateness.

Stylistic and structural constraints greatly

impact LLMs' output quality [1].

GPT-3 confuses style with subject matter

and faces challenges with certain words and

numerical constraints [1].

Prompting techniques: zero-shot capability

(without explicit training) and few-shot

prompting (using demonstrations).

Zero-shot prompting is less effective for

tasks deviating from pre-training data

format.

LLMs' universal knowledge differs from

specific behavioral patterns in private

domain data.

Instruction tuning combines pretrain-

finetuning and prompting to enhance zero-

shot performance of LLMs.

Chain-of-thought prompting improves

reasoning by generating intermediate steps

for multi-step problems.

Heuristic strategies for code generation

involve rewording, expanding/reducing

scope, retrying, and recalibrating targets.

Conversational approaches and specific

words like "obviously" enhance code output

repair and performance in certain contexts.

RQ1:

04 Results

[1] Albert Lu, Hongxin Zhang, Yanzhe Zhang, Xuezhi Wang, and Diyi Yang. Bounding the capabilities of large language models in open text generation with prompt
constraints. arXiv preprint arXiv:2302.09185, 2023.
[2] adel M Megahed, Ying-Ju Chen, Joshua A Ferris, Sven Knoth, and L Allison Jones-Farmer. How generative ai models such as chatgpt can be (mis) used in spc
practice, education, and research? an exploratory study. arXiv preprint arXiv:2302.10916, 2023.

Related literature

LLMs, like BERT and ChatGPT, are based on the Transformer architecture, which uses attention

mechanisms to capture long-range dependencies. Transformers have outperformed traditional

neural networks in NLP tasks due to their attention mechanisms. LLMs employ self-attention and

tokenization techniques, such as subword tokenization. BERT is trained using a Masked Language

Model and is bi-directional, while ChatGPT is based on an autoregressive left-to-right Transformer.

BERT is encoder-only, generating fixed-length representations, while ChatGPT is decoder-only,

making it more suitable for text-generation tasks.

02 Background

Agents enhance pair programming by

assisting with expertise-related challenges.

NLP techniques improve code generation.

GPT-3 generates code explanations and aids

in learning programming languages.

Fine-tuning LLMs on domain-specific data

supports learners in that domain.

ChatGPT excels in programming tasks and

learning new languages, leveraging

recognized packages and online

documentation in prompts [2].

RQ2:

PRISMA Flowchart

