
Analyzing the Impact of Self-Admitted Technical Debt on the Code Completion
Performance of Large Language Models

Author: Lucas Witte (L.C.Witte@student.tudelft.nl)

• SATD is sparse in the dataset
• SATD has a negligible impact on performance
• Three other factors had more impact on performance:

• Target length
• Method complexity
• Available context

• Metric scores generally aligned with semantic
correctness

• Metrics are misled by non-functional text
• No evidence that models were able to generate correct

completions in cases where the ground truth was broken.

5. Conclusion

• Try larger models
• Rerun FiM generations
• Try different languages
• Explore other data smells
• Try more localized SATD targets

6. Future Work

Self-Admitted Technical Debt (SATD) refers to suboptimal
code introduced during rushed development, often as
quick and temporary fixes, which developers explicitly
acknowledge through source code comments. Common
examples include comments like TODO or FIXME:

// TODO: handle null case

Removing SATD from training data has shown to improve
model performance. However, the isolated effect of SATD
at inference time remains unclear.

1. Background

1. What is the presence of SATD in The Heap?

2. What is the impact of SATD on the performance of
LLMs for code completion tasks?

3. Do models generate correct code, that doesn’t
match (broken) ground truth?

2. Research Questions

RQ1 Presence of SATD in the Heap

4. Results

Supervisors: Jonathan Katzy and Razvan Mihai Popescu Responsible Professors: Maliheh Izadi and Arie van Deursen

RQ3 Qualitative Model Performance

• Trends in semantic classification largely matched the text-based metrics
• Shorter targets achieved higher metric scores, often due to common boilerplate (e.g., public void).
• Preprocessing SATD had little impact, models often produced nearly identical outputs.
• In only 6 of 40 files was SATD located directly above the target method. Two of those had debt that could be

fixed. The models still failed to fix the described technical debt.

1. SATD Detection + Annotation
2. Input–Target Construction
3. Code Generation
4. Evaluation: Quantitative + Qualitative

3. Methodology

In
pu

t
Ta

rg
et

Models = SmolLM2, StarCoder2, or Mellum
Prediction = model.generate(input)
Score = compare(prediction, target)

Annotation

Measure Value
Total source files 5,168,193
Total SATD comments 914,347
Files with ≥1 SATD comment 431,145

(8.34%)
Average SATD comments per file 0.18
Median SATD comments per file 0
Max SATD comments in a single file 2,230
SATD comments per KLOC 1.26

RQ2 Quantitative Model Performance

Only the BLEU metric is presented here since all
other metrics shared the same trends
• No-smell-comment performs better than in-smell
• Methods farther from SATD perform better
• Peprocessing by removing SATD from the context

has negligible effects
• Bigger models perform better

Figure 5: Qualitative evaluation of semantic
generation correctness (causal only)

Figure 1: Distribution of SATD comments per file in the The
Heap Java dataset

Figure 2: Metric scores for group 1

Figure 3: Metric scores for group 2

Table 1: SATD presence statistics in the Java subset of The Heap

Figure 4: Metric scores for group 3

Figure 6: Lengths (in characters) and proportions of short methods (three lines or
fewer) per case

mailto:L.C.Witte@student.tudelft.nl

	Slide 1

