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1. Introduction

Public deliberations
e a vital component of the democratic
system [1]

Challenge
e unstructured nature of deliberations
challenges moderators to comprehend
and analyze the large volume of data
produced [2]

First step in structuring deliberations
e identifying topics -> multi-label
classification problem

Further challenges
e labeled data necessitates employing a
group of annotators -> process that is
both costly and time-consuming
e annotator's disagreement [3]

Possible Solution
e« LLMs offer a promising opportunity to
revolutionize the identification of
subjective data annotation

2 core objectives:
1. ldentifying Gold Label
2.Exploring Subjective Human Labels

2. Research questions

How can Large Language Models
classify subjective topics behind
public discourse?

3. Data

Dataset: Energy in Sudwest-Fryslan case study
482 responses

Label extraction: BERTopic [4] -> 6 labels

Data annotation: 5 annotators
50 data Items
- overall moderate agreement (based on
Fleiss Kappa metric)

Data aggregation: majority vote (>50%)
no aggregation

4. Methodology

Two step RaR + Few-shot CoT + EmotionalPrompt
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Figure 1: Overview of Prompting Strategies

5. Results and Discussion

« Each method -> run 10 times  Preprocessing results using
and aggregates using MV Sentence Transformers

Prnm?l::ﬁ;::laining Micro F1-Score
Zero-shot 0.64
Zero-shot CoT 0.657
Few-shot 0.817
Few-shot CoT 0.817
Fine-tuning with QLoRa 0.865

Table 1: Micro-F1 Score Results for
Identifying Gold Labels

Averaged Micro F1-Score

Prompting method for all annotators
Few-shot 0.756
Few-shot CoT 0.715
Few-shot CoT v2 0.75
RaR + Few-shot CoT v2 0.682
Few-shot CoT v2 + EmotionPrompt 0.782
RaR + Few-shot CoT v2 0.779

Table 2: Averaged Micro-F1 Score Results for
Prompting Methods for Exploring Subjective
Human Labels

Limitations

e hallucination [7] (especially for CoT method)
e dependency on high-quality data (fine-tuning and evaluation)
 low number of annotations and not a diverse pool of annotators
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Figure 2: Process of extracting topics - from data gathering

to Fine-tuning LLaMa-2 with QLoRa [6]

6. Conclusion and Future work

1. The potential of LLMs to identify subjective topics behind public
discourse has been highlighted through the study

2. ldentifying Gold Label
o Fine-tuning LLama-2 with QLoRa (best Micro-F1 score)

3. Exploring Subjective Human Labels:
o Few-shot CoT v2 + EmotionPrompt [8] (best Micro-F1 score)

Future work
1.Expand the annotated dataset
2.Expand the pool of annotators to be more diverse
3.Fine-tune LLM for Exploring Subjective Human Labels
4.Explore the hallucination issue
5.Different temperature settings
6.Soft probabilistic labels
/. Explore the use different LLMs
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