Dilemma

Bad agents

- Agents that always defect when opponent is not of the same group
- When groups are used \Box bad agents cooperate with own group, defect with other groups
- When no groups are used 🖨 bad agents never cooperate
- Three different configurations are used, in which the number of bad agents differs

Configuration	p_{bad}
k_0	0
k_1	0.05
k_2	0.10

References

B. Baranski *et al.*, "The Impact of Group Reputation in Multiagent Environments," *2006 IEEE International Conference on Evolutionary Computation*, 2006, pp. 1224-1231, doi: 10.1109/CEC.2006.1688449.

Nadathur, S., Nadathur, S., & Profile, V. M. C. (2021, 18 mei). *Extortion in Prisoner's Dilemma*. Blank on the map. http://blankonthemap.blogspot.com/2012/09/optimal-strategies-in-iterated.html

Ir	ntroduction		Bcc	operates	Bd	efects
•	In the prisoner's dilemma cooperation is	A cooperates	3	3	0	5
	better for the group, defection however is better for the individual	A defects	5	0	1	1
•	Agents have no memory How does reputation infl agents?	uence the resistance	e to bad			

Spatial configuration

- Agents are spawned on a grid
- Each round agents will decide to cooperate or defect
- The result of the game impacts the chance to procreate

Reputation

- Agents can look up reputation of other agents
- The reputation of each agent is the percentage that agent cooperated
- Each agent can then decide to cooperate or defect

Bad agents

Configuration

 k_0

 k_1

 k_2

 $\frac{p_{bad}}{0}$

0.05

0.10

- Agents that always defect when opponent is not of the same group
- When groups are used bad agents cooperate with own group, defect with other groups
- When no groups are used bad agents never cooperate
- Three different configurations are used, in which the number of bad agents differs

Solo reputation

- Each agent has an own reputation, and a threshold for cooperation
- Expected is that reputation increases resistance and improves cooperation
- This is indeed the case in the configurations with bad agents: reputation makes for less bad agents and more cooperation

			-		
	pop	bad	good	coop	
k_0	1765	0	1765	100.0%	
k_0 rep	1760	0	1760	100.0%	
δ	-0.3%	0.0%	-0.3%	0.0%	
k_1	1753	22	1732	98.9%	
k_1 rep	1757	8	1749	99.5%	
δ	0.2%	-63.6%	1.0%	0.6%	
k_2	1775	26	1749	98.5%	
k_2 rep	1759	12	1747	99.2%	
δ	-0.9%	-56.2%	-0.1%	0.8%	

Group reputation

- The reputation is determined by the average reputation of a group, and each agent has a threshold for cooperation for each group
- Expected is that reputation increases resistance and improves cooperation
- The resistance to bad agents has improved by introducing reputation
- The cooperation with agents of other groups has improved, however the cooperation with agents of the same group has gone down

	pop	bad	good	$coop_s$	$coop_d$
k_0	1780	0	1780	100.0%	100.0%
k_0 rep	1781	0	1781	99.6%	97.9%
δ	0.1%	0.0%	0.1%	-0.4%	-2.1%
k_1	1707	1346	361	100.0%	28.0%
k_1 rep	1688	846	842	97.3%	43.4%
δ	-1.1%	-37.1%	133.3%	-2.7%	55.1%
k_2	1674	1445	229	100.0%	19.3%
k_2 rep	1686	1241	445	97.9%	25.1%
δ	0.7%	-14.2%	94.6%	-2.1%	30.2%

Results

- On average over all experiments the population and the cooperation percentage do not differ very much when using reputation
- There are a lot more good agents when reputation is used, and the population of bad agents decreases
- Therefore, using reputation improves the resistance to bad agents

 δ pop
 δ bad
 δ good
 δ coop

 -1.4%
 -27.5%
 45.2%
 1.3%

References

B. Baranski *et al.*, "The Impact of Group Reputation in Multiagent Environments," *2006 IEEE International Conference on Evolutionary Computation*, 2006, pp. 1224-1231, doi: 10.1109/CEC.2006.1688449. Nadathur, S., Nadathur, S., & Profile, V. M. C. (2021, 18 mei). *Extortion in Prisoner's Dilemma*. Blank on the map. http://blankonthemap.blogspot.com/2012/09/optimal-strategies-in-iterated.html