Frogram Junthesis In Hinecr att s s o

ODetfining Aewar-ds and Exploiting Juccesstful Frograms

1 Background Fage 1
Frogram Junthesis - Technigue that creates
programs that provably =atisty a given high-lawel
formal specification,

Frobe - A synthesis algorithm that uses a
pr-obabilistic context free grammar CFCFG2 which gets
dedated atter every cucle

HineRL - A puthon librarg which uses Hinecraftt to
provide tasks and environments,

2 Obgective Fage 2
How can we modify probe to use rewards to sunthesis
programs’?

How do explore game environments to discover usetul
actionz?

How do we ad_just the Frobe program santhesiser to
exploit successtul programs it has alFeady
discouverad

3 Hethodology

Deneralise Frobe - Modulariszed the algorithm to
allow the interchange and use of custom search
function, FCFG, selection of partial solutions and
dpdating arammar methods,

Fage 3

Jelection function - Selects partial sclutions which
obtain the largest Freward by traveling the closest to
the desired destination

Observational equivalence - After ewvaluation
some programs have same result, Therefore we
store the evaluation result and it a program has the
same evaluation, discard it,

Update grammar - Uses the algorithm below to

change the probabilities of a grammar rule appearing,

tailoring the search function to find the final solution
E_uis the uniform probahbility

Pu[ﬂ}“ frat) 2 is the normalisation factor
7 Fit iz a walue that range=
from @ to 1

p(RR) —

Integrate dith HinehAL - ==t up an enwironemnt
where agent must travel to destination &4 blocks
away, The closer the agent gets, the Larger the
feedback reward

4q 3et—Up & Resullts

The experiments were run 2 times in 5 diverse world sesds
Most experiments el on changing the fithess basead on
reward for the grammar rule,

Experiment 1 — Constant Fitness = 8.3, Akble to solve 1 world
and nearly solves another,

Experiment 2 — Linear Fithess = reward/S188 Able to solue =
worlds, Vastly lower amount aof time regquired, Sometimes skips
the 259 threshold and reaches goal directly like in fig, 5

Experiment 3 — Exponential Fitness = 1- explCreward /S533
This fitness exploited a lot at all stages therefore wasn't

1=

akble to navigate a dense forest in world seed 5354

Experiment 4 — Logarithimic Fitness = loglACC1+rewarda 20,
Jurprisingly did well on the harder of the = worlds,

Experiment 3 — Complex fithess using 2 wariables) reward and
number of occurtrences of grammar rdle in partial solutions.,
Very exploitative aof the partial solutions and performed the

best when reaching 257 of the reward howewver struggled on
some worlds to reach the final goal,

1,000 1,000

800

600

400

200

| |
Constant Linear Exp Log Complex

Constant Linear Exp Log Complex

fitness algorithms fitness algorithms

[Reach 95% max reward Ml Reached final solution [JReach 95% max reward MReached final solution

Figure 4: World 1. Time to find solution using different fitness Figure 5: World 2. Time to find solution using different fitness
algorithms. Missing Bars means no solution algorithms

1,000 ‘ | 80

800 . -

600

400 Sl —=— 999999
: - 11248956
9n812

200 6354

| |
Constant Linear Exp Log Complex

—e— UHE129

fitness algorithms

[Reach 95% max reward M Reached final solution

Synthesis Time

Figure 6: World 3. Time to find solution using different fitness
algorithms. Missing Bars means no solution Figure 12: fit best reward/
|

I. L]

100 200 300 400 500 600

Faged

Experiment 7 — The szame fitness was used as in Experiment
1-5 howewver this time the initial probabilities of the grammars
were set to a successful or partially succes=ful grammar
for that world,

» Orammar more tailored to final solution

= Time till 257 reward decreased

* Time to reach full Freward increased

= Jome worlds became unsolwable — not enough exploration

 Different starting grammar — different set of worlds

could be soluwed

1,000 : 1,000

800 800
600 600
400 . 400

200 H 200
0

0

| | |
Constant Lincar Exp Log Complex

Constant Linear Exp Log Complex

fitness algorithms

[JReached 95% solution M Reached final solution ‘

fitness algorithms

‘ [Reached 95% solution Ml Reached final solution

Figure 9: World 1. Time to find solution using different fitness Figure 7: World 2. Time to find solution using different fitness
algorithms and with starting probabilities algorithms and with starting probabilities

1,000 : ‘ 1,000 | :

800 800

600 600

100 . 400

200 200

0 0
I !
Constant Linear Exp Log Complex

| |
Constant Lincar Exp Log Complex

fitness algorithms

[Reached 95% solution Ml Reached final solution

fitness algorithms

‘D Reached 95% solution @l Reached final solution

Figure 10: World 3. Time to find solution using different fitness Figure 8: World 4. Time to find solution using different fitness
algorithms and with starting probabilities algorithms and with starting probabilities

2 Conclusion

» Increase exploitation by changing starting
ar-ammat probahbilities

» U= different fitness algorithms to change how
much praobabilities change

» Increasing exploitation reduces time to almost
solve but increases time to actually solue

» Too much exploitation kills off exploration
meaning it is difficult to reach destination when
neat,

» Speedup depends on environment: simpler
worlds show a significant speedup, more comple:x
and difficult worlds

Fage 5

Starting with an exploited grammar reduces initial
time to locate correct direction for travel and
allows to take a different route to goal, Howewver
exploration is lessened even more and it now often
doesn't even find a =olution

	Page 1

