
1 Background Page 1

Program Synthesis Technique that creates –
programs that provably satisfy a given high-level
formal specification.

Probe A synthesis algorithm that uses a –
probabilistic context free grammar (PCFG) which gets
updated after every cycle

MineRL A python library which uses – Minecraft to
provide tasks and environments.

2 Objective Page 2

How can we modify probe to use rewards to synthesis
programs?

How do explore game environments to discover useful
actions?

How do we adjust the Probe program synthesiser to
exploit successful programs it has already
discovered

3 Methodology Page 3

Generalise Probe – Modularised the algorithm to
allow the interchange and use of custom search
function, PCFG, selection of partial solutions and
updating grammar methods.

Selection function Selects – partial solutions which
obtain the largest reward by traveling the closest to
the desired destination

Observational equivalence After evaluation –
some programs have same result. Therefore we
store the evaluation result and if a program has the
same evaluation, discard it.

Update grammar Uses the algorithm below to –
change the probabilities of a grammar rule appearing,
tailoring the search function to find the final solution

Integrate with MineRL set up an environemnt –
where agent must travel to destination 64 blocks
away. The closer the agent gets, the larger the
feedback reward

p_u is the uniform probability
Z is the normalisation factor
Fit is a value that ranges
from 0 to 1

4 Set-Up & Results

The experiments were run 3 times in 5 diverse world seeds
Most experiments rely on changing the fitness based on
reward for the grammar rule.

Experiment 1 – Constant Fitness = 0.3. Able to solve 1 world
and nearly solves another.

Experiment 2 – Linear Fitness = reward/100 Able to solve 3
worlds. Vastly lower amount of time required. Sometimes skips
the 95% threshold and reaches goal directly like in fig. 5

Experiment 3 – Exponential Fitness = 1- exp((reward/55)^3
This fitness exploited a lot at all stages therefore wasn't
able to navigate a dense forest in world seed 6354

Experiment 4 – Logarithmic Fitness = log10((1+reward)/2).
Surprisingly did well on the harder of the 3 worlds.

Experiment 5 – Complex fitness using 2 variables: reward and
number of occurrences of grammar rule in partial solutions.
Very exploitative of the partial solutions and performed the
best when reaching 95% of the reward however struggled on
some worlds to reach the final goal.

 Page4
Experiment 7 The same fitness was used as in Experiment –
1-5 however this time the initial probabilities of the grammars
were set to a successful or partially successful grammar
for that world.
● ▪ Grammar more tailored to final solution
 ▪ Time till 95% reward decreased
 ▪ Time to reach full reward increased
 ▪ Some worlds became unsolvable not enough exploration–
● ▪ Different starting grammar different set of worlds –

could be solved

Program Synthesis in Minecraft

Defining Rewards and Exploiting Successful Programs

5 Conclusion Page 5
● ▪ Increase exploitation by changing starting

grammar probabilities
● ▪ Use different fitness algorithms to change how

much probabilities change
● ▪ Increasing exploitation reduces time to almost

solve but increases time to actually solve
● ▪ Too much exploitation kills off exploration

meaning it is difficult to reach destination when
near.

● ▪ Speedup depends on environment: simpler
worlds show a significant speedup, more complex
and difficult worlds

Starting with an exploited grammar reduces initial
time to locate correct direction for travel and
allows to take a different route to goal. However
exploration is lessened even more and it now often
doesn t even find a solution’

	Page 1

