
Data assumption: Patients have three visits (baseline, 5y, 10y), and disease

progression occurs gradually and detectably across them.

Contrastive Predictive Coding (CPC)  [3] based longitudinal pretraining (see Fig. 2):

Two past scans → ResNet-18 encoder → GRU context model predicts the future visit’s

embedding. InfoNCE loss aligns the prediction with the actual future embedding

while repelling unrelated patients.

CPC forces the model to learn progression-aware representations that reflect

meaningful changes in joint structure over time.

Multi-task pretraining: Combining CPC with SimCLR [4] may yield representations that

are both temporally informative and robust to irrelevant variation.

• Sequential CPC→SimCLR: First learn progression, then refine with per-scan contrast.

• Interleaved CPC+SimCLR: Alternate CPC and SimCLR in each minibatch to co-train

both objectives.

Osteoarthritis (OA) progressively degrades joints, causing pain and disability.

Hip OA is graded on X-rays with the Kellgren–Lawrence (KL) [1] scale, but manual

scoring is slow and subjective.

Deep-learning graders work well but demand large annotated datasets that are hard

to obtain [2].

Self-supervised learning (SSL) cuts the label burden, yet most SSL one use one scan

per patient.

Longitudinal data: some dataset offer serial hip X-rays (baseline, 5 yr, 10 yr) that

capture progression.
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Determine whether integrating
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representation learning leads to

richer embeddings—and, in

turn, to higher downstream KL-

grade classification performance

—while keeping labeled data

requirements low.
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Figure 2: CPC-based self-supervised pretraining.

 The model encodes a sequence of hip X-rays (e.g., Year 1 & 2) and uses an autoregressive model (GRU) to predict future

representations (e.g., Year 3). A contrastive loss encourages alignment with the true future (z₃) while distinguishing from

negatives drawn from other patients.

 3) Static SimCLR – contrastive learning on most recent X-ray

 5) Patch prediction*-only – predict the rightmost band from image split horizontally in 3 bands

 6) Sequential Patch prediction*→SimCLR – pretrain with patch task, then SimCLR

Research Question

1) CPC-only 

4) Interleaved CPC+SimCLR

2) Sequential CPC→SimCLR 

Evaluation:
• Attach a classifier head to the frozen encoder

• Binary KL classification (KL < 2 vs. ≥ 2) using theWe use the Osteoarthritis Initiative dataset [5]  

• Metric: AUROC over 3 seeds (to account for randomness in split, init, and training order)

• Additional comparison to a fully supervised baseline

Patch prediction* has the same architecture as the one for CPC pretraining, but predicts within a

single scan. This controls for multi-task effects without temporal input. Comparing Patch→SimCLR

vs CPC→SimCLR helps isolate the effect of temporal modeling.

Figure 4: Classification performance (AUROC and Accuracy) for all

pretraining strategies.

Figure 3: Area-under-the-ROC-curve (AUROC) obtained

by each

pre-training strategy, averaged over the three

experimental seeds

Hybrid models combining temporal

and static objectives achieved the

best performance (AUROC: 0.87)

CPC slightly outperformed SimCLR,

suggesting a modest benefit from

longitudinal information alone.

Patch-based controls underperformed

In the multitask setting, patch-based pretraining did not improve performance—

AUROC remained similar between SimCLR-only and Sequential Patch→SimCLR (0.69

vs 0.70).

It remains unclear whether

gains stem from multitask

learning itself or specifically

from combining temporally-

aware pretraining with

SimCLR, as the patch task

may be too weak for a fair

comparison.

Using longitudinal information during SSL improves learned representations for

KL-grade classification.

This study has the following limitations:

Evaluation was limited to the OAI dataset; generalization to other cohorts

remains untested.

Each patient had only three visits—longer sequences might enhance the

value of CPC.

Patch prediction is a weak control task; stronger pretext tasks are needed

for fair multitask comparisons.

Multitask pretraining approaches (CPC + SimCLR) exceed the performance of

fully supervised performance without requiring labeled data for pretraining.

Temporal pretraining alone offers modest gains, but performs best when

combined with scan-level contrastive learning.

Results support the value of incorporating progression cues into SSL pipelines for

medical imaging.
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