Evaluating the Value of Longitudinal Hip Radiographs in Self-Supervised Pretraining for Author Supervisors **Osteoarthritis Classification** Jesse Krijthe1, Gijs van Tulder

Dimana Stoyanova - dstoyanova@tudelft.nl

INTRODUCTION

Background

- Osteoarthritis (OA) progressively degrades joints, causing pain and disability.
- Hip OA is graded on X-rays with the Kellgren–Lawrence (KL) [1] scale, but manual scoring is slow and subjective.
- Deep-learning graders work well but demand large annotated datasets that are hard to obtain [2].
- Self-supervised learning (SSL) cuts the label burden, yet most SSL one use one scan per patient.
- Longitudinal data: some dataset offer serial hip X-rays (baseline, 5 yr, 10 yr) that capture progression.

Research Question

Determine whether integrating longitudinal information during representation learning leads to richer embeddings—and, in turn, to higher downstream KLgrade classification performance —while keeping labeled data requirements low.

Figure 1: Source: Jarraya et al., Radiographics (2021) Reproduced for academic use

METHODOLOGY

- Data assumption: Patients have three visits (baseline, 5y, 10y), and disease progression occurs gradually and detectably across them.
- Contrastive Predictive Coding (CPC) [3] based longitudinal pretraining (see Fig. 2): Two past scans \rightarrow ResNet-18 encoder \rightarrow GRU context model predicts the future visit's embedding. InfoNCE loss aligns the prediction with the actual future embedding while repelling unrelated patients.
- CPC forces the model to learn progression-aware representations that reflect meaningful changes in joint structure over time.
- Multi-task pretraining: Combining CPC with SimCLR [4] may yield representations that are both temporally informative and robust to irrelevant variation.
- • Sequential CPC \rightarrow SimCLR: First learn progression, then refine with per-scan contrast.
- • Interleaved CPC+SimCLR: Alternate CPC and SimCLR in each minibatch to co-train both objectives.

Figure 2: CPC-based self-supervised pretraining

The model encodes a sequence of hip X-rays (e.g., Year 1 & 2) and uses an autoregressive model (GRU) to predict future representations (e.g., Year 3). A contrastive loss encourages alignment with the true future (z₃) while distinguishing from negatives drawn from other patients.

EXPERIMENTAL SETUP

Pretraining Modes:

1) CPC-only

- **3)** Static SimCLR contrastive learning on most recent X-ray
- 5) Patch prediction*-only predict the rightmost band from image split horizontally in 3 bands
- **6)** Sequential Patch prediction* \rightarrow SimCLR pretrain with patch task, then SimCLR

Patch prediction* has the same architecture as the one for CPC pretraining, but predicts within a single scan. This controls for multi-task effects without temporal input. Comparing Patch \rightarrow SimCLR vs CPC \rightarrow SimCLR helps isolate the effect of temporal modeling.

Evaluation:

- Attach a classifier head to the frozen encoder
- Binary KL classification (KL < 2 vs. \geq 2) using the We use the Osteoarthritis Initiative dataset [5]
- Metric: AUROC over 3 seeds (to account for randomness in split, init, and training order)
- Additional comparison to a fully supervised baseline

RESULTS & DISCUSSION

2) Sequential CPC→SimCLR 4) Interleaved CPC+SimCLR

- Hybrid models combining temporal and static objectives achieved the best performance (AUROC: 0.87)
- CPC slightly outperformed SimCLR, suggesting a modest benefit from longitudinal information alone.
- Patch-based controls underperformed

Figure 3: Area-under-the-ROC-curve (AUROC) obtained by each pre-training strategy, averaged over the three experimental seeds

- In the multitask setting, patch-based pretraining did not improve performance— AUROC remained similar between SimCLR-only and Sequential Patch→SimCLR (0.69 vs 0.70).
- It remains unclear whether gains stem from multitask learning itself or specifically from combining temporallyaware pretraining with SimCLR, as the patch task may be too weak for a fair comparison.

Figure 4: Classification performance (AUROC and Accuracy) for all pretraining strategies

This study has the following limitations:

- Evaluation was limited to the OAI dataset; generalization to other cohorts remains untested.
- Each patient had only three visits—longer sequences might enhance the value of CPC.
- Patch prediction is a weak control task; stronger pretext tasks are needed for fair multitask comparisons.

CONCLUSION

- Using longitudinal information during SSL improves learned representations for KL-grade classification.
- Multitask pretraining approaches (CPC + SimCLR) exceed the performance of fully supervised performance without requiring labeled data for pretraining.
- Temporal pretraining alone offers modest gains, but performs best when combined with scan-level contrastive learning.
- Results support the value of incorporating progression cues into SSL pipelines for medical imaging.

[1] J. H. Kellgren and J. S. Lawrence, Radiological Assessment of Osteo-Arthrosis, Annals of the Rheumatic Diseases, 1957.

[2] A. Tiulpin, J. Thévenot, E. Rahtu, P. Lehenkari, and S. Saarakkala, Automatic knee osteoarthritis diagnosis from plain radiographs: A deep learning-based approach, IEEE Transactions on Medical Imaging, 2018.

[3] A. van den Oord, Y. Li, and O. Vinyals, Representation Learning with Contrastive Predictive Coding, arXiv preprint arXiv:1807.03748, 2018.

[4] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, A Simple Framework for Contrastive Learning of Visual Representations, Proceedings of the International Conference on Machine Learning (ICML), pp. 1597–1607, 2020.

[5] Osteoarthritis Initiative, Osteoarthritis Initiative (OAI) Database, 2006. Available at: https://nda.nih.gov/oai/