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1. Introduction
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Figure 1. Our goal is to lower data collection

effort while maintaining accuracy.
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Table 3: Frame structure (Controller to VLC TXs; B: bytes)

ETH PHY + MAC header TX ID Pilot sig. Preamble SFD Length Dst Src Protocol Payload Reed-Solomon

8B 32 symbols 32 symbols 1B 2B 2B 2B 2B xB !x/200" 16B

{0, Isw,max } for each VLC TX based on our ranking algorithm
presented in Sec. 5.

8 PERFORMANCE EVALUATION
In this section we evaluate the performance of DenseVLC.

Experimental setup. We evaluate the performance of DenseVLC
in a system of 36 VLC TXs and 4 RXs. The TXs are deployed 6 × 6
within an area of 3m × 3m, with 0.5 m inter-TX distance, and a
height of 2 m from the !oor. The 4 RXs are placed on the !oor,
controlled by 4 OpenBuilds ACRO System [2] and can be moved to
any position within the 3m × 3m area. The experimental setup is
depicted in Fig. 17.

Illuminance distribution. DenseVLC provides an average illumi-
nation of 530 lux and an uniformity of 81%. The measurements
were performed with the HS1010 lux meter.

8.1 Synchronization evaluation
The synchronization between TXs is one of the key enablers in
DenseVLC. To evaluate the proposed method that exploits NLOS
VLC for synchronization, we "rst randomly choose two neighbor-
ing TXs, TX2 and TX3. TX2 is appointed as the leading TX to send
the pilot signal for synchronization. The symbol rate ftx at TX2
and the sampling rate frx at TX3 are set to 100 Ksymbols/s and 1
Msamples/s, respectively. We connect the anodes of the LEDs at
TX2 and TX3 to an oscilloscope (RIGOL MSO1104) to capture the
transmitted signals. The delay between the corresponding symbol
edges of the two signals are measured. As in Sec. 6.1, we calculate
the median of the synchronization delay and compare it to those
from the method based on NTP/PTP and to the one without syn-
chronization. The results are shown in Table 4. We can see that the
median synchronization delay of our method with NLOS VLC is
only 0.575 µs, improving the synchronization granularity by nearly
an order of magnitude compared to the one using NTP/PTP. Note

Figure 17: Experimental setup

Table 4: Evaluation of the proposed synchronization

No Synchronization NTP/PTP NLOS VLC

Median error 10.040 µs 4.565 µs 0.575 µs

Table 5: Experimental result using iperf

Scenario Throughput [Kbit/s] PER [%]

2 TXs 33.9 0.19

4 TXs (no sync) 0 100

4 TXs (with our sync) 33.8 0.55

that with advanced devices supporting a higher sampling rate of
frx, the synchronization granularity supported by our NLOS VLC
based method can be further improved.

To test the synchronization performance, we perform iperf mea-
surements for 100 seconds under three di#erent scenarios. For all
scenarios, there is one RX, located in the center of TX2, TX3, TX8
and TX9. The results are shown in Table 5. In the "rst scenario, only
TX2 and TX8 serve the RX. Since TX2 and TX8 are managed by the
same BBB, no synchronisation is required. The packet error rate
(PER) is low, due to the strong signal strength and low noise at the
RX. The achieved throughput is lower than the used symbol rate
of 100 Ksymbols/s, due to Manchester encoding, PHY and MAC
layer overhead and Reed-Solomon error correcting. In the second
scenario, TX3 and TX9, managed by another BBB, also serve the RX.
However, no synchronization is enabled. No packets are received,
due to improper alignment of the frames in time. In the last scenario,
synchronization is added. Very low packet loss is observed again,
showing that our NLOS VLC based synchronization works.

8.2 Heuristic evaluation
To evaluate our proposed ranking algorithm in DenseVLC, we carry
out experiments under three representing scenarios, for which the
RX positions are listed in Table 6:

• Scenario 1: interference-free; no dominating TX.
• Scenario 2: with interference; no dominating TX.
• Scenario 3: with interference; with dominating TX.

First, we perform experimental channel measurements from the
36 TXs to the 4 RXs. Afterwards, the path loss is computed as the
received swing level at the RX and reported to the controller. Using
the path loss data, the controller runs the ranking-based heuristic
as presented in Algorithm 1 for di#erent values of κ. We assign the
TXs from the ranked list one by one (i.e. increasing the allowed
power budget on communication step by step) to the corresponding
RXs, and calculate the SINR based on Eq. (12) with the experimental
data. The system throughput is obtained based on Eq. 5.
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(b) Testbed

Figure 2. DenseVLC [1] Testbed used to collect the RSS data.

Research questions:

How can the data cleaning and augmentation pipeline [3] be further improved to increase

the accuracy and lower data collection effort?

How do spatially irregular data acquisition strategies compare to collecting data in a rigid

grid?

2. Improving Data Cleaning

Observation: The majority of noise are zero measurements.

Improvement: Revised RSS continuity scoring with brightness boosting, to improve retention of

bright measurements.

Original Revised
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(a) Raw data for LED13 (b) Original scoring metric, LED13 (c) Revised scoring metric, LED13

(d) Raw data for LED7 (e) Original scoring metric, LED7 (f) Revised scoring metric, LED7

Figure 3. Comparison between raw noisy measurements and clean ones with different cleaning methods. Our

method retains many more valuable samples even when a lot of noise is present.

3. Improving Data Augmentation

Observation: The imprecise LED positions make data augmentation less accurate.

Improvement: Employ robust circle fitting by Kasa [2] to accurately estimate the LED positions

+ IDW interpolation.

(a) Raw data (b) Thresholded RSS (c) Fitted circle using Kasa

(d) Augmented 16-to-1 cm with subpar LED

position estimates

(e) Augmented 16-to-1 cm with improved

LED position estimates

Figure 4. The effects of inaccurate LED positions on the RSS data augmentation, along with methods that improve

the accuracy.
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Figure 5. Summarized pipeline of data cleaning and augmentation. The estimated LED positions are used both to

reconstruct missing points and increase the density of the dataset.

4. Improved Pipeline Evaluation
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Raw data Clean data Augmented data (from 16 cm)

Original Revised

Error against Raw Raw Clean Raw Clean Raw Clean

Conf 1 1.64 6.06 0.79 7.86 1.70 6.68 1.38↓18.8%
Conf 2 4.55 13.52 2.91 14.39 4.66 14.01 4.09↓12.2%
Conf 3 40.53 49.65 24.20 51.49 27.13 51.20 26.93↓0.7%
Conf 4 2.55 7.61 1.51 9.84 3.33 8.71 3.08↓7.5%
Conf 5 6.61 11.32 5.93 15.96 9.23 16.30 9.44↑2.3%
Conf 6 12.28 17.26 10.17 25.14 16.08 25.21 15.31↓4.8%

Table 1. Average errors (in cm) between four model tested on six different LED topologies of varying sparsity

(graphic on the left). Evaluated against raw and clean data.

Improvements in accuracy of reconstructing clean data by up to 20% compared to the original

method.

5. Spatially Irregular Data Collection

Goal: Reconstruct the clean dataset from differently distributed samples of

the RSS values – uniform, LED-centered normal, globally-centered normal.

(a) Grid data - 8 cm (b) Uniformly distributed data

(c) Normally distributed,

LED-centered data

(d) Normally distributed,

globally-centered data

Figure 6. Showcase of different sampling methods imitating

different data collection strategies. All approaches sample around

1000 points.

Grid Uniform Normal

∼1000 samples

Conf 1 1.16 1.17↑0.9% 1.13↓2.6%
Conf 2 3.65 3.90↑6.8% 3.76↑3%
Conf 3 26.12 25.60↓2% 25.64↓1.8%
Conf 4 2.18 2.57↑17.9% 2.48↑13.8%
Conf 5 8.62 8.21↓4.8% 8.38↓2.8%
Conf 6 15.47 15.70↑1.5% 15.01↓3%

∼250 samples

Conf 1 1.38 1.54↑11.6% 1.42↑2.9%
Conf 2 4.09 4.87↑19.1% 5.02↑22.7%
Conf 3 26.93 27.19↑1% 27.42↑1.8%
Conf 4 3.08 3.97↑28.9% 3.69↑19.8%
Conf 5 9.44 9.66↑2.3% 10.05↑6.5%
Conf 6 15.31 16.86↑10.1% 18.73↑22.3%

Table 2. Comparison of accuracies

between models trained on augmented

datasets constructed from structured,

grid-like, from uniformly, and from

LED-centered normally distributed

samples.

(a) Conf 2 (b) Conf 4 (c) Conf 6

Figure 7. Comparison of error differences between rigid grid and globally centered normally distributed. Blue –

normally distributed was better, red – grid was better.

Uniform sampling was inferior to grid in all cases, LED-centered normally distributed was con-

siderably better with higher sample counts, while globally-centered normally distributed gave

a local accuracy boost for denser LED configurations.

6. Conclusions

The two-layer, 96-perceptron MLP performed comparably to a large 2.5k-neuron network

used in [3].

Improvements to the pipeline can lower the errors by around 20%.

Need more robust interpolation methods to make the employment of alternative sampling

strategies effective.

More challenging datasets required to further evaluate and refine the methods.
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