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1. Introduction
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Figure 1. Our goal is to lower data collection

effort while maintaining accuracy. Figure 2. DenseVLC [1] Testbed used to collect the RSS data.

Research questions:

= How can the data cleaning and augmentation pipeline [3] be further improved to increase
the accuracy and lower data collection effort?

= How do spatially irregular data acquisition strategies compare to collecting data in a rigid
grid?

2. Improving Data Cleaning

Observation: The majority of noise are zero measurements.
Improvement: Revised RSS continuity scoring with brightness boosting, to improve retention of
bright measurements.
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(d) Raw data for LED7 (e) Original scoring metric, LED7 (f) Revised scoring metric, LED7

Figure 3. Comparison between raw noisy measurements and clean ones with different cleaning methods. Our
method retains many more valuable samples even when a lot of noise is present.
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3. Improving Data Augmentation

Observation: The imprecise LED positions make data augmentation less accurate.
Improvement: Employ robust circle fitting by Kasa [2] to accurately estimate the LED positions
+ IDW interpolation.
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Figure 4. The effects of inaccurate LED positions on the RSS data augmentation, along with methods that improve

the accuracy.
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Figure 5. Summarized pipeline of data cleaning and augmentation. The estimated LED positions are used both to
reconstruct missing points and increase the density of the dataset.

4. Improved Pipeline Evaluation
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5. Spatially Irregular Data Collection

Goal: Reconstruct the «clean dataset from differently distributed samples of
the RSS wvalues - uniform, LED-centered normal, globally-centered normal.
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Figure 6. Showcase of different sampling methods imitating samples.
different data collection strategies. All approaches sample around
1000 points.
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Figure /. Comparison of error differences between rigid grid and globally centered normally distributed. Blue -
normally distributed was better, red - grid was better.

Uniform sampling was inferior to grid in all cases, LED-centered normally distributed was con-
siderably better with higher sample counts, while globally-centered normally distributed gave
a local accuracy boost for denser LED configurations.

6. Conclusions
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Table 1. Average errors (in cm) between four model tested on six different LED topologies of varying sparsity
(graphic on the left). Evaluated against raw and clean data.

Improvements in accuracy of reconstructing clean data by up to 20% compared to the original
method.

The two-layer, 96-perceptron MLP performed comparably to a large 2.5k-neuron network
used in [3].

= Improvements to the pipeline can lower the errors by around 20%.

Need more robust interpolation methods to make the employment of alternative sampling
strategies effective.

More challenging datasets required to further evaluate and refine the methods.
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