
Reusing already existing packages

introduces a number of dependencies in an

application.

Once an exploit is found in any of these

dependencies, the whole application

becomes vulnerable. Some famous

examples are the Log4J and the leftPad

cases.

Existing work does not include the

transitive dependencies based on the time

of the release of a package. (Fig. 1)

4
Fig. 2 provides an overview of the nodes with the highest page rank

scores. Those were defined as the most widely used packages in

the context of this research.

Fig. 3 shows that the implemented time dependent graph structure

actually resolves dependencies according to each version. The

results are consistent with those in Fig. 2, considering that there

they are aggregated.

In Fig. 4 can be observed the popularity of the packages over the

years. It can be noticed that libc6 and libgcc1 are closely related,

apart from 2022 when the libgcc-s1 is released.

B.1.0
T1

A.1.0
T0

A.1.1
T2

C.1.0
T3

Time

libc6 libgcc1 multiarch-support zlib1g gcc

2015 2016 2017 2018 2019 2020 2021 2022

0.3

0.2

0.1

0

Using a time dependency
graph to find the most widely
used Debian packages

AUTHOR
Teodor Dobrev

T.Dobrev@student.tudelft.nl

AFFILIATIONS
Supervisor: Georgios Gousios

G.Gousios@tudelft.nl

Superviosr: Diomidis Spineellis

D.Spinellis@tudelf.nl

BACKGROUND1 RESEARCH

QUESTIONS

How to efficiently design a

dependency graph structure?

How does time influence a

dependency graph structure?

What measures of criticality

could be used to evaluate this

graph data structure?

Which are the most widely

used Debian Packages?

2 METHODOLOGY
Collecting the Debian data from the

Snapshot Archive [1]

Creating a timed graph structure and

mapping the data onto it. This is done

by introducing an individual node per

version, timestamped with its release

date.

Comparing querying of the graph with

the resolutions provided by the

package manager.

Running a PageRank algorithm to find

the most widely used packages.

3

CONCLUSION &

FUTURE WORK5

RELATED LITERATURE

[1] https://snapshot.debian.org/

Figure 1: The dependencies between 3 packages (A, B
and C) in time (denoted as T)

Debian packages were

mapped onto a time

dependency graph. It

resolved their dependencies

as accurate as the package

manager itself.

Introducing the time

component increased the

precision of dependency

resolving as it can be seen in

Fig. 3.

A point of improvement is

the scalability of the graph

since it does not perform

well enough on larger

datasets.

Currently, this research

does not show the benefits

of improving the precision of

the dependency resolving.

Figure 3: PageRank results per individual version
(Average of 10 runs)

Figure 2: PageRank results aggregated
by package (Average of 10 runs)

Figure 4: PageRank results over time (Average of 10
runs)

RESULTS

