. Background

- Tactile Internet (TI) aims to allow real-time interaction between remote systems.
- However, ultra-low latency (ULL) networks have a distance limitation, as the speed of information is limited to the speed of light.
- A possible solution is to use a local physics simulation that matches the remote environment.
- But how can we simulate any remote environment locally? By using visual information to estimate the properties of objects.
- An RGB-D camera, such as the Microsoft Kinect, can be used to obtain both color and depth information of the objects in its field of view.
- This information can be represented in a point cloud an array of points with XYZ-coordinates (and RGB-values).

Figure 2. A point cloud of objects on a table [2].

2. Research Question

- We want to be able to estimate the physical properties of objects in scenes similar to Figure 2.
- This is a complex problem, so perhaps a good starting question is: how to
 estimate the mass of an object from its point cloud?
- Assuming the density of the object can be obtained based on the material properties estimated from its point cloud.
- · Then all we need is the volume of the object.

Figure 3. The computed oriented bounding box (OBB), shown in blue, for the downsampled point cloud of a cone.

3. Methodology

- A test set of synthetic point clouds was generated using artificial objects with varying rotations.
- Using this test set, we evaluated two volume estimation approaches:
 1. Based on the volume of the oriented bounding box (OBB).
 - Based on the volume of the mesh.
- The mesh was created using a greedy triangulation surfacing algorithm implemented by the Point Cloud Library (PCL).
- The volume of the resulting mesh was estimated by subdividing it using tetrahedrons.

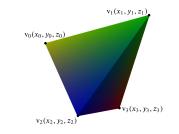


Figure 4. A tetrahedron - created from the vertices of a triangular face in the mesh, v_1 , v_2 , and v_3 , and the approximate center of the mesh, v_0 .

- The volume of the tetrahedron can be calculated as follows:
 - $$\begin{split} & \frac{1}{6} |-(x_2 x_0)(y_3 y_0)(z_1 z_0) + (x_3 x_0)(y_2 y_0)(z_1 z_0) \\ & + (x_2 x_0)(y_1 y_0)(z_3 z_0) (x_1 x_0)(y_2 y_0)(z_3 z_0) \\ & (x_3 x_0)(y_1 y_0)(z_2 z_0) + (x_1 x_0)(y_3 y_0)(z_2 z_0) | \end{split}$$
- The sign of the volume is determined by the inner product of the vector from the center, v_{η} , to the vertex v_{4} , and the normal of the triangular face.

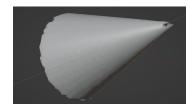


Figure 5. The resulting mesh of the pont cloud for a cone (rotated 45°).

4. Results

Object	Rotation (degrees)	Expected Value (cm ³)	Mean OBB Estimate (cm ^a)	Mean Mesh Estimate (cm³)	Mean OBB Error (%)	Mean Mesh Error (%)
Box	0.00	20,250.00	20,253.93	18,629,75	0.02%	8.00%
	7.00	20,250.00	20,857.21	18,689.14	3.00%	7.719
	45.00	20,250.00	20,506.21	19,161.78	1.27%	5.37%
Cone	0.00	4,581.66	17,931.24	4,655.32	291.37%	1.619
	7.00	4,581.66	18,093,50	4,620.15	294,91%	0.849
	45.00	4,581.66	18,219.28	2,605.36	297.66%	43.139
Mug	0.00	46,941.40	95,572.11	45,555.86	103.60%	2.95
	7.00	46,941.50	95,669.36	45,377.22	103.81%	3.33
	45.00	46,941.60	96,368.45	45,565.43	105.29%	2.93
Torus	0.00	10,846.60	28,223,36	10,768,54	160.20%	0.729
	7.00	10,846.60	28,319.24	10,763.14	161.09%	0.77
	45.00	10,846.60	28,389.51	10,763.63	161.74%	0.76

Table 1. The results obtained from the 2 volume estimation approaches on the test set.

Conclusions

- In general, the mesh volume estimate performs better than the OBB volume estimate, in terms of the mean percent error.
- But performs worse than some other existing volume estimation methods, such as the method used in "Object Volume Estimation Based on 3D Point Cloud" [3].
- . The test set used may be incompatible with the surfacing algorithm used.
- Further research should be conducted to verify the assumptions made.

References

[1] Z. Zhang, "Microsoft kinect sensor and its effect," IEEE Multimedia, vol. 19, pp. 4–10, 2 Feb. 2012, sisci. 1070-966X, doi: 10.1109/MMLL.0212.24, [Online]. Available: http://disecstpore.isee.org/document6190806/ [2] A. Makhal, F. Thomas, and A. P. Gracia, "Grasping unknown objects in clutter by superquadric representation," Oct. 2017, [Online]. Available: http://jurniv.org/abs/1710.02121. [3] W.-C. Chang, C.-H. Wu, Y.-H. Tsai, and W.-Y. Chiu, "Object volume estimation based on 3d point cloud," in 2017 International Automatic Control Conference (CACS), pp. 1–6, IEEE, 2017.