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1. Introduction 3. Results

. LLM market on to become worth 1.3 trillion USD - RQ1: What is a practical categorisation of code weaknesses?

market by 2032 [1] CWE Database: combination of Seven Pernicious Kingdoms
[4] and the CWE 2023 Top 25 [6] .. .
RQ2: How do LLMs respond when prompted to create S. Limitations
potentially Insecure code? LLMs rarely warn about insecure
code. There is a correlation between parameter size and %
secure code, see fig. 1,2,3
RQ3: How well do LLMs detect insecure code snippets? LLMs
can detect insecure code snippets very well, see fig. 4
RQ4: How does LLM alignment influence generation of
insecure code? There is no visible link between LLM alignment
and security of code, although aligned LLMs warn more often

. Github CoPilot has over a million paying users [2]
. Up to 40% of LLM-generated code has software

weaknesses [7] . Creation of prompts is manual: there might be bias in them

. A limited set of models has been used, popular models like
ChatGPT have been left out

. Security evaluation has just been made with 1 CWE item per
prompt

Developers use LLM-generated code, although it has
Its risks. Code generated by LLMs can contain
vulnerabilities, bugs and insecurities. By generating a
representative dataset of prompts and then using this
on different models we try to find answers.
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6. Future work
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This research should be performed with
- A larger prompt set:. cover more weaknesses
. More models: can we find a stronger correlation?

2. Methodology
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1.We make a taxonomy of code weaknesses based on
the CWE database [3]. We use the "Seven Pernicious
Kingdoms" paper [4] and merge it with the CWE TOP _ . .
25 software weaknesses ranking [6]. ; N ' SRR
2.Based on this taxonomy we create a set of realistic References
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