Mean-Field Multi Agent Reinforcement
Learning for Active Wake Control

Ion Plamadeala
i.plamadeala@student.tudelft.nl
Supervised by:

Mathijs de Weerdt

Greg Neustroev

1. Active Wake Control 2. Reinforcement Learning Mean Field MARL in a Diagram 3. Mean-Field MARL
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4. Methodology Results 5. Conclusion

The research uses FLORIS, a wind
wake simulator. In the experiments
below, I used a wind tunnel with 3
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After 3000-4000 episodes, the model
converges to near-optimal yaw
configuration. While these results

turbines, and 4 wind tunnels of 4 ~ l'- | are promising, they are limited to
turbines in parallel. I run each &°%% R “ "I parallel wind tunnels. The next step
experiment for 3000-4000 episodes Emm EO_OOGZ ‘ 1s researching real-world layouts
(between 2h and 12h), with around a " e l and changing wind directions.

150 steps per episode. I varied the & goooao I :

reward in different experiments,
from the total power output to global
delta between power output for each
step, and, in the mean-field spirit, a
limited delta.
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