
Development:
Iris (i: 150; f: 4; c: 3)*

Evaluation:
Seeds (i: 210, f: 8, c: 3)
Wisconsin Diagnostic Dataset Breast Cancer (i: 569, f:31, c:2)
Human Activity Recognition (i: 10299, f: 562, c: 6)

Maximum number of fitness functions (100)
Maximum depth pipeline (4)
mutation probability (0.1)

Datasets:

Settings

* instances, features, classes

BACKGROUND

”HOW WELL DOES A PROGRAM SYNTHESIZER BASED ON A GENETIC ALGORITHM PERFORM ON CREATING MACHINE LEARNING PIPELINES?”

SOLVE MACHINE LEARNING... WITH MACHINE LEARNING: GENETIC ALGORITHM-BASED PROGRAM SYNTHESIZER FOR
THE CONSTRUCTION OF MACHINE LEARNING PIPELINES

FUTURE WORK

REFERENCES

With the growing presence of artificial intelligence, developers are
looking for more efficient methods to construct machine learning
algorithms.

Program synthesizers allow us to produce algorithms consisting of
scalers, feature selection and classifiers. Each pipeline is a potential
solution to the given machine learning task.

The goal of this synthesizer was to find the best-suited pipeline for the
problem.

METHODOLOGY

RESULTS

”How well does a program synthesizer based on a genetic algorithm perform in
creating machine learning pipelines?”;

"What observable difference is there in the quality of different kinds of machine
learning pipelines produced by the same genetic algorithm-based synthesizer?”;

"How does the genetic algorithm-based synthesizer compare to man-made
pipelines and synthesizers based on different machine learning algorithms?";

Create a context-free grammar, describing the set of possible machine learning
pipelines.
Develop the algorithm that would find the best pipeline in the search space.

This algorithm with a genetic algorithm approach for the best solution for
the machine learning task.

Evaluate the performance of the algorithm.
Accuracy of the produced pipeline.
Speed of synthesizer and pipelines.

Compare to other synthesizers and report results.

Research questions:

strategy:

The synthesizers proved not to be much more accurate than the general
breadth-first algorithm. Runtimes are too irregular, most likely due to
incompatibility between particular pipelines and Scikit-learn
functionalities.

Future research can continue improving the algorithms with the goal of
stabilizing the runtimes. Afterward, bigger classification problems for
which breadth-first search algorithms are not suitable anymore can be
used in further research toward the validity of machine learning
synthesizers. The number of iterations, pipeline depth and number of
fitness functions can be increased to increase the search space. To
perform this research, resources that were not available for this
research project, like more advanced computers should be used to solve
the bigger classification problems.

M. Charytanowicz, J. Niewczas, P. Kulczycki, P. Kowalski, and S. Lukasik. seeds. UCI Machine Learning Repository, 2012. DOI:
https://doi.org/10.24432/C5H30K.
I. De Falco, âªA. Della Cioppa, and E. Tarantino. Mutation-based genetic algorithm: performance evaluation. Applied Soft Computing, 1(4):285–299, 2002.
A. de Sá, W. Pinto, L. Oliveira, and G. Pappa. Recipe: a grammar-based framework for automatically evolving classification pipelines. In Genetic
Programming: 20th European Conference, EuroGP 2017, Amsterdam, The Netherlands, April 19-21, 2017, Proceedings 20, pages 246–261. Springer, 2017.
B. Filius, T. Hinnerichs, and S. Dumanˇ cić. Solving ml with ml: Evaluating the performance of the monte carlo tree search algorithm in the context of
program synthesis. TU Delft preprint: available from repository.tudelft.nl, 2023.
R. A. Fisher. Iris. UCI Machine Learning Repository, 1988. DOI: https://doi.org/10.24432/C56C76.
D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic algorithms. volume 1 of Foundations of Genetic Algorithms, pages
69–93. Elsevier, 1991.
S. Gulwani, O. Polozov, R. Singh, et al. Program synthesis. Foundations and Trends® in Programming Languages, 4(1-2):1–119, 2017.
M. Katz, P. Ram, S. Sohrabi, and O. Udrea. Exploring context-free languages via planning: The case for automating machine learning. Proceedings of the
International Conference on Automated Planning and Scheduling, 30(1):403–411, Jun. 2020.
R. Lejeune, T. Hinnerichs, and S. Duman ˇ cić. Solving ml with ml: Effectiveness of a star search for synthesizing machine learning pipelines. TU Delft
preprint: available from repository.tudelft.nl, 2023.
T. M. Mitchell. The discipline of machine learning, volume 9. Carnegie Mellon University, School of Computer Science, Machine Learning âŠ, 2006.
M. Negnevitsky. Artificial Intelligence: A Guide to Intelligent Systems. Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 2001.
J. Reyes-Ortiz, D. Anguita, A. Ghio, L. Oneto, and X. Parra. Human Activity Recognition Using Smartphones. UCI Machine Learning Repository, 2012. DOI:
https://doi.org/10.24432/C54S4K.
J. De Jong P. Klop S. Dumanˇ cić, T. Hinnerichs. Herb.jl. https://github.com/ Herb-AI/Herb.jl, 2023.
D. Sheremet, T. Hinnerichs, and S. Dumanˇ cić. Solving ml with ml: Effectiveness of the metropolis-hastings algorithm for synthesizing machine learning
pipelines. TU Delft preprint: available from repository.tudelft.nl, 2023.
D. Sheremet, A. Sonneveld, R. Lejeune, B. Filius, M. Butenaerts, S. Dumanˇ cić, and T. Hinnerichs. Herb.jl. https://github.com/Herb-AI/Herb.jl, 2023. 29
Michael Sipser. Introduction to the Theory of Computation. Course Technology, 2006.
A. Sonneveld, T. Hinnerichs, and S. Duman ˇ cić. Solving machine learning with machine learning: Exploiting very large-scale neighbourhood search for
synthesizing machine learning pipelines. TU Delft preprint: available from repository.tudelft.nl, 2023.
A. J. Umbarkar and P. D. Sheth. Crossover operators in genetic algorithms: a review. ICTACT journal on soft computing, 6(1), 2015.
W. Wolberg, O. Mangasarian, N. Street, and W. Street. Breast Cancer Wisconsin (Diagnostic). UCI Machine Learning Repository, 1995. DOI:
https://doi.org/10.24432/C5DW2B.
M. Butenaerts, T. Hinnerichs, and S. Dumancić. Genetic algorithm-based program synthesizer for the construction of machine learning pipelines. TU Delft
preprint: available from repository.tudelft.nl, 2023

Author
Mathieu Butenaerts
m.g.a.butenaerts@student.tudelft.nl

Professor
Sebastijan Dumančić
s.dumancic@tudelft.nl

Supervisor
Tilman Hinnerichs
T.R.Hinnerichs@tudelft.nl

Focus on average accuracy,
average time, best accuracy and
time of best accuracy.
Small variance in accuracy, great
variance in time.
note worthy observations:

Monte Carlo Tree search:
perfect accuracy in 1341,8
seconds on WDBS
Genetic algorithm: two failed
experiments with 0 accuracy,
resulting in a smaller average.

Results

High variance in time can be explained by dependency on Skicit-learn +
faulty pipelines + different search algorithm configurations.
Synthesizers do not have much better performances than a breadth-first
search.
Small pipelines perform almost as well as long pipelines on the datasets.

Conclusion

"Is the use of synthesizers in machine learning worth persuing?"

figure 1: Experiments results

