

Practical Verification of QuadTrees
Jonathan Brouwer (jtbrouwer@student.tudelft.nl) Delft University of Technology

QuadTrees are used for storing two-
dimensional information in a functional
style. They consist of a size and a root
quadrant. Each quadrant is either a Leaf, or a
Node consisting of 4 sub-quadrants.

2. QuadTrees

QuadTree is a Haskell library. This paper
aims to rewrite this in Agda, so it can be
formally verified using the Curry Howard
correspondance, which encodes proofs as
types. It can then be compiled back to
Haskell using Agda2hs.

Can agda2hs be used to produce a
verified implementation of the QuadTree
library?

1. Introduction
Invariants are proven by adding the proof as an implicit
constructor argument. To verify that a quadrant is compressed
(no identical leafs) and has a certain depth, we can use:

Invariants

Preconditions are proven by adding the proofs as implicit
arguments to the function. To verify that the location given to
getLocation is in the QuadTree, one can use:

Alternatively, we can pass in a datatype with an invariant.
This getLeaf function only takes a leaf as input

Preconditions

Postconditions are proven as separate functions.
For example, this is a proof that this function returns a number
greater than 5.

Postconditions

How was the QuadTree library re-implemented?
Translate the code from Haskell to Agda (trivial)
Issues: Agda does not allow non-termination
 Agda does not have escape latches

 Agda2hs needed some modifications

3. Implementation

How was the QuadTree library verified?
● Find properties to prove, using techniques from

the “Ready, set, verify!” paper [1]
● Depending on the type of property, verify them

in a certain way [follow arrows]
● To reduce the time needed:

● Postulate theorems about libraries
● Use automatic proof search
● First prove invariants and preconditions,

then post-conditions.

4. Verification

The library was successfully verified!
Verified 2 invariants, 3 preconditions and 4 post-
conditions. Still, quite a lot of effort! Whether it is
worth it depends on the situation.

5. Conclusions

 [1] Joachim Breitnet, Antal Spector-Zabusky, Yao Li, Christine Rizkallah, John Wiegley,
 Joshua Cohen, and Stephanie Weirich. Ready, set, verify! applying hs-to-coq to real-
 world haskell code. Journal of Functional Programming, 31, 2021.

takesGtFive : (n : Nat)
→ IsTrue (n > 5) → ?

data VQuadrant (t : Set) {dep : Nat} : Set where
 CVQuadrant : (qd : Quadrant t)

→ IsTrue (isValid qd)
→ VQuadrant t {dep}

getLocation : (loc : Nat × Nat) → (qt : QuadTree t)
→ IsTrue (isInsideQuadTree loc qt) → t

getLeaf : VQuadrant t {0} → t

number : Bool → Nat
gt5 _ = 42

number-is-gt5 : (b : Bool)
 → IsTrue (number b > 5)

Implementation

Functor Proofs

Lens Proofs

Foldable Proofs

General Proofs

	Slide 1

