
Optimal solution lies on the Pareto Front and combining them is
very expensive O(size )
Pareto Front - a set of solution for which   (x,y)    PF,∄(x1​,y1​)    PF
such that x>x1​ and y>y1
The intuition for our method is that the candidate points for the
Pareto Front are on the Convex Hull of the whole set of points and
thus we can achieve better performance by following these 3 main
steps:

Use Minkowski Sums to combine the left and right set of
solutions
Calculate the Pareto Front of the resulting set
Compute the Convex Hull to assure the convexity of the
solution set 

Convex Hull - convex polygon enclosing all points in given space
Minkowski Sum - the polygon resulting from translating the second
polygon by all the points of the first
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1. Problem
Machine Learning models are becoming more complex and harder
to interpret. Optimal Decision Trees are both performant and
interpretable, requiring a low number of nodes to find the optimal
solution. However, non-linear metrics, which are very effective
when evaluating trees on imbalanced datasets, still represent a
challenge in terms of runtime performance and scalability. 
Our aim is to improve the merging step of the algorithm and as a
result allow the construction of bigger better trees.

2. Research Questions
Does only keeping the Convex Hull of the Pareto Front still lead
to the optimal solution?
How does the algorithm compare in run-time to the state-of-
the-art?

3. Minkowski Sum Merge Algorithm
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4. Experiments and conclusions
To evaluate our algorithm, we compared it against the Pareto Front approach on
artificial datasets as well as against STreeD [1] using Pareto Fronts. Our experiments
show a close to 10% speed-up in our approach.

In isolation we can observe
the huge impact of
switching from a O(n )
approach to O(n * log(n))
one when n grows.

We can already start to
notice some improvements
when constructing trees of
depth 4. 

As we reach trees of depth
5, the improvements
become much more
noticeable, achieving a close
to 12% speed-up.
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