
3.2 Results: Compute efficiency

2.3 Method: Compute efficiency

2.2 Method: Data efficiency

Efficient Temporal Action Localization via Vision-Language Modeling

Yunhan Wang

RQ: How well do current CLIP-based TAL methods perform and generalise in a limited compute power and data setting?

Attila Lengyel
Ombretta Strafforello
Robert-Jan Bruintjes

Jan van Gemert

1. Background
Temporal action localization (TAL) aims to localize the start and
end time of actions in untrimmed videos and classify the action
types. A video clip can include more than one action instance
and background frames without actions.

Vision-language models: using contrastive learning to pair
images with natural language signals, CLIP [1] has shown that
paired image-caption data can be leveraged to learn powerful
visual representations for zero-shot recognition. CLIP was
extended for TAL by modelling temporal information such as
the STALE [2] and Eff-Prompt [3] models. STALE was selected
to evaluate due to its state-of-the-art performance.

2.1 Method: Model

3.1 Results: Data efficiency

5. Reference
[1] Learning transferable visual models from natural language supervision. ICML 2021.

[2] Zero-shot temporal action detection via vision language prompting. ECCV 2022.

[3] Prompting visual-language models for efficient video understanding. ECCV 2022.

[4] UntrimmedNets for weakly supervised action recognition and detection. CVPR 2017.

[5] ActionFormer: localizing moments of actions with transformers. ECCV 2022

y.wang-128@student.tudelft.nl
Computer Vision Lab,

Delft University of Technology

Fig 1. Illustration of the CLIP model (a) and a one-stage pipeline for CLIP-
based TAL (b). The classes are treated as textual prompts and are trained to
pair with vision instances. In (b), the outputs are the action class and action
start/end time for each action instance in each untrimmed video.

4. Discussion

Fig 2. Illustration of closed/open-
set scenarios. Data efficiency
experiments consists of both
scenarios with limited training
data (p). Subsets are sampled
uniformly without replacement.
Experiments are performed on
the ActivityNet dataset.

(1) Examining compute efficiency: record time consumption, memory consumption, GPU 
utilization percentage, MACs during model inference by varying input video length.

(2) Examining quantization effect: record time consumption of different model precisions 
during model forward pass on CPU/GPU by varying input video length.

Fig 3. Illustration of quantizing a
model from 32-bit to 8-bit to
reduce floating computation. We
quantize all STALE’s linear and
convolutional layers.

Table 1. Comparison of open-set mAP results of STALE with/without the use of score 
enhancement and trained on 100% or 50% of data. Score enhancement: adopt classification 
from UntrimmedNet [4] for uncertain predictions.

Fig 4. Closed-set average-mAP
comparison with different p
training data amounts between
STALE with/without score
enhancement and ActionFormer
[5]. Without score enhancement,
STALE trained with 7000
samples can even produce
comparable results to STALE
trained with 8840 samples.

Fig 5. Inference time and GPU
utilization with varying input video
lengths. GPU utilization gradually drops
as we increase video lengths and
converge to around 14% since a video
length of 1400.

Fig 6. Effects of quantization on model
forward pass time across different
precisions on a CPU/GPU. The forward
time on GPU has a linear increasing
tendency from 0.080s at length 200 to
0.101s at length 3000. Quantizing
STALE into 8-bit precision can
drastically reduce forward time on the
CPU compared to the original 32-bit.

• The CLIP-based STALE model demonstrates adequate
generalizability with limited training data amount in the
close/open-set scenarios.

• STALE has a considerable gap in mAP performance
compared with recent transformed-based TAL models such
as ActionFormer [5].

• During model inference, STALE can utilize GPU better when
the input video length is small. We recommend setting the
input video length to smaller than or equal to 200 for fast
inference and higher computational efficiency.

• 8-bit model quantization can remarkably reduce the time
consumption of forward pass on STALE with a single CPU.


