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the STALE [2] and Eff-Prompt [3] models. STALE was selected Class prompts
to evaluate due to its state-of-the-art performance.
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Quantization Fig 3. lllustration of quantizing a
model from 32-bit to 8-bit to
reduce floating computation. We
quantize all STALE’s linear and

convolutional layers.
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Fig 1. lllustration of the CLIP model (a) and a one-stage pipeline for CLIP-
based TAL (b). The classes are treated as textual prompts and are trained to
pair with vision instances. In (b), the outputs are the action class and action

start/end time for each action instance in each untrimmed video. (2) Examining quantization effect: record time consumption of different model precisions
* The CLIP-based STALE model demonstrates adequate during model forward pass on CPU/GPU by varying input video length.
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* 8-bit model quantization can remarkably reduce the time
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from UntrimmedNet [4] for uncertain predictions.
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