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Introduction

- Decentralized learning is a paradigm to perform
machine learning from multi-source dataina
distributed and decentralized manner

- Churn, when members leave the network, has the
most influence under non-identical and
independently distributed (non-1ID) data, reducing
generalizability and hurting performance[1]

- Possible scenario: decentralized learing where data
comes from mobile phones which often switch
between being online and offline

- Existing efforts often treat the performance of
decentralized learning under churn as a secondary
issue, overlooking its significance

Research Question

How can we mitigate the impact of node
churn in decentralized learning systems
to maintain some persistence of member

Methodology

Churn:

« Permanent churn is modeled with schedule deciding in
which iteration a member leaves.

- probaiblistic churn is modeled with probability to leave
and rejoin the network

Joint Steps:
- Dataset condensation: generate synthetic data using
distribution matching (see Figure 1)
- Exchange synthetic data with neighbors

Data Augmentation:

- augment received data to train set
- train with cross entropy loss

Synthetic Anchors (inspired by DeSA|2)):

- augment received data to synthetic set
- train with cross entropy loss + supervised contrastive
loss[4] :

L = AcpLep(D;, D™, M;) + Agcr.Lser(D;, D™, M;)
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