
Program Synthesis

Possible mutations: add_token, remove_token, add_loop, 
add_if_statement, start_over

Randomized Locality Mutations (Kendall Correlation):

→ Randomized locality overfits on domains

End locality Mutations (Kendall Correlation):

→ Fixed-at-end locality can be optimized
→ DSL Matters

Locality Comparison:

→ No difference in performance

How to train your dragon:

On the application of the Metropolis-Hastings method for Program Synthesis
Author: Bo Hofstede

Goal: Create an algorithm to generate other programs

How? 
1. Establish Intent
2. Efficiently search through all possible program

Intent: User Input-Output Examples, used to evaluate program’s ‘cost’

Domain Specific Language (DSL): a smaller version of a programming 
language, consists of tokens:
- Transition, affect  program state (e.g. MoveRight)
- Boolean, based on state (e.g. IsUpperCase)
- Control, affect program flow (e.g. LoopWhile)

Domains: Robot, Pixel, String

Metrics: Success Rate, Execution Time, Program Length

Example: String

Cost Function: Levenshtein
(Min. no. single-char edits)

Program: [MakeUpperCase,  LoopWhile(IsLetter, MoveRight), MoveRight, 
MakeUpperCase, While(IsLetter, MoveRight), Drop]

What?
Markov Chain Monte Carlo method.

Goal: approximate a distribution that can be evaluated but not sampled 
from.

Idea: mutate a program, accept with probability:

𝐴(𝑥′, 𝑥) = min(1,
𝜋(𝑦)

𝜋(𝑦)

𝐽(𝑦,𝑥)

𝐽(𝑥,𝑦)
), where  𝜋 𝑥 = 𝑒−𝛼∗𝐶𝑜𝑠𝑡(𝑥)

Conclusion

Improvements can be made, however they fail to perform better than 
more random but domain specific approaches.

Research Question

Is it possible to improve the performance of a stochastic search
Metropolis-Hasting program synthesis algorithm by changing the 
configuration of components?

Cost Normalization (α):

→ Domain dependent, possibly relating to the program’s likelihood to get 
stuck in certain local optima's

Metropolis-vs-Hastings:

→ It is very difficult to define explicit inverses
→ Underestimate transition probabilities

Credit has to be given to the people that created on the codebase prior to 
this paper:

1. Victor van Wieringen,  with contributions from S Dumančić (mentor), 
and C B Poulsen (mentor). Comparative ´ analysis of the metropolis-
hastings algorithm as applied to the domain of program synthesis, 1 
2022.

2. Andrew Cropper and Sebastijan Dumančić . Learning large logic 
programs by going beyond entailment. 2020.

Metropolis-Hastings

Results: Mutations

Results: Acceptance Function

Responsible Research

1

2

3

4a

4b

5

6

Supervisor:  S. Dumančić


