Computing Visibility Functions Using Polygon Intersection Algorithms

Author: Marc Ruijs Contact: m.j.a.ruijs@student.tudelft.nl TUDelft

Responsible Professor: Ricardo Marroquim **Supervisor:** Yang Chen

1 Introduction

- In computer graphics, determining the amount of surface area that is *visible from a viewpoint* is a relevant problem [1].
- Approximative algorithms exist, but these are inherently inaccurate.
- This research provides an exact algorithm, such that the accuracy of approximative methods can be evaluated.

2 Research Question

Are approximative visibility algorithms accurate enough to justify their usage?

4 Results

Zenith	Our algorithm	Approximated method
90°	100%	99.1%
80°	100%	99.2%
70°	95.1%	94.7%
60°	86.8%	86.9%
50°	79.2%	79.5%
40°	38.5%	71.8%
30°	62.9%	63.9%
20°	55.4%	55.6%
10°	40.2%	49.3%

Table 1: The outputs for our algorithm, as well as an approximative one. Results for varying viewing angles are listed

5 Conclusion

- Results show that approximated outputs are not identical to the outputs of our algorithm, so for applications that require maximum accuracy, an exact method is still recommended.
- However, the differences between them are small, and for any situation that does not demand maximum accuracy, using an approximative method is justified.

6 Limitations

Outliers in the results are caused by floating-point errors, which cause the algorithm to make mistakes.

References

[1] T. Akenine-Mller, E.Haines, and N. Hoffman, *Real-Time Rendering, Fourth Edition,* 4th USA: A. K. Peters, Ltd., 2018, pp. 327-338.

3 Methodology

Figure 1 shows a surface of which we want to find the visible area, which is done following these steps:

- 1. Project surface triangles onto our 2-dimensional view-space, as shown in Figure 2.
- 2. Combine all triangles into one shape. The area of this shape equals the visible surface area, and is shown in Figure 3.
- 3. Triangulation of this shape results in a collection of triangles that take up the same area, as shown in Figure 4.
- 4. Calculate the area for each triangle and add them up.

Figure 1: The surface of which we want to calculate the visible area

Figure 2: The surface triangles projected to our view-space

Figure 3: The shape that is the result of combining all projected triangles

Figure 4: The shape is split up into triangles by the triangulation algorithm