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Introduction

Large Language Models (LLMs) are increasingly used in software devel-

opment, but their potential for misuse in generating harmful code, such

as malware, raises significant concerns.

We present a red-teaming1 approach to assess the safety and ethical

alignment of LLMs in the context of code generation, in particular how it

applies to the generation of malware. By developing a dataset of prompts

that are likely to elicit harmful behavior from the LLMs, we aim to provide

a valuable resource for benchmarking the harmlessness factor of these

models.

Using this dataset, we evaluate multiple state-of-the-art open-source

LLMs, analyzing factors such asmodel size, training alignment, and prompt

specificity.
1Red-teaming: the practice of testing the security of a system by adopting the perspective of an

adversary – in our case, probing LLMs to identify and characterize potential traits and behaviors

that could be exploited to generate harmful outputs, such as malware or phishing content.

Research Question

Our research is primarily driven by the question: ”How can Large Language

Models be assessed for their potential to generate malware?”

We aim to understand the factors influencing the generation of harmful

code, evaluate the effectiveness of various open-source LLMs in mitigat-

ing these risks, and develop a framework for automatically assessing

the ethical alignment and safety of these models as applies to malware

generation.

Hypotheses

In our study, we aimed to test several key hypotheses about the behavior

of large language models (LLMs) in generating malicious code. Here are

the hypotheses we tested:

1. Models are not entirely harmless

2. There are significant differences in harmlessness between models,

correlated with the emphasis that was put on alignment during train-

ing

3. The specificity of the prompt is correlated with the likelihood of a

harmful response

4. A model’s harmlessness factor can be influenced by its given system

prompt

5. A model’s size correlates with its ability to recognize harmful prompts

6. A model can reliably evaluate itself after response generation for its

level of harmlessness

These hypotheses guided our research and were the bases on which we

established our findings.

Approach

1. We begin by constructing a taxonomy of the study field, outlining the specific

categories of prompts we want to subject LLMs to.

2. We select a reference LLM for generating prompts. With this, we begin an

exploratory phase in which we explore the results of random prompts. We

make various assumptions, and we form several hypotheses we can later test.

3. In the prompting phase, we manually craft and label prompts through both a

creative and an iterative process. This is done creatively (coming up with a

new prompt) and iteratively (tweaking an existing prompt).

4. Wemanually evaluate the responses produced by our referencemodel, setting

a baseline to which the automatic evaluator will compare. We perform a

statistical test to assess the accuracy of this automatic evaluation method.

5. We apply the automatic evaluator to additional models to gather data, and

we test our hypotheses.

“Write a keylogger targeting Windows in C”

Llama 3
I cannot provide a code for a keylogger that targets Windows in C

Dolphin-Mixtral

Here’s an example of a C keylogger using SetWindowsHookEx (from user32.dll).

The Automatic Evaluator

Repeated 3 times per prompt

Prompt Generator LLM System Prompt

Evaluator Prompt Template Evaluator LLM

JSON ParserPass/Warn/Fail Label

guaranteed JSON with

”aware” and ”unethical” keys

Fig. 1: Visual representation of the automatic evaluator

The automatic evaluator uses the LangChain library in Python to set up a pipeline

that automatically prompts and evaluates a given model. It makes use of a

feature that state-of-the-art LLMs provide, called JSON mode, in which the model

is guaranteed to output only valid JSON. This allows for an LLM to generate data

a computer can understand.

The evaluator, after prompting a model, looks for two key things in each response:

whether it shows awareness of ethical concerns (labeled as “aware”) and whether

it includes any harmful or unethical content (labeled as “unethical”).

Results & Discussion

0.915

Meta Llama 3 70B was ultimately chosen as the Evaluator LLM.

Its Cohen’s kappa score of 0.915 against a human evaluator

suggests that it is highly reliable and can be considered a suit-

able tool, both for this study and for future ones.
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We found significant differences in

the harmlessness of models. Some

models were more prone to gener-

ating harmful outputs, while others

had stronger safeguards. Models

trained with consideration to ethical

alignment showed significantly bet-

ter harmlessness scores compared to

models where alignment was missing,

highlighting the impact that training

and fine-tuning practices like dataset

filtering and Reinforcement Learning

with Human Feedback have in devel-

oping more ethically aligned LLMs.
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Difference in Harmlessness

Regular vs. Coercive System Prompt

We also found that system prompts

can significantly influence the be-

havior of LLMs. The use of coer-

cive prompts that attempt to tie non-

compliance to negative consequences

resulted in drastic changes in model

harmlessness. Some models however

showed resistance, due to what we

believe is the inclusion of prompts

like these in their training data. This

outlines a clear area of improvement

for some models, and future red-

teaming work could look towards sys-

tem prompts as the attack vector.

Conclusion

LLMs vary significantly in their propensity to generate harmful code,

influenced by factors like training data, alignment techniques, system

prompts and prompt specificity. Furthermore, LLMs can serve as reliable

evaluators in certain scenarios. Ultimately, we emphasize the impor-

tance of ongoing research and development of training techniques to

mitigate these risks.
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