
Code Completion is the task of using the source code a

developer has already written and predicting what they will

write next. Having a computer predict what a developer

will write next instead of them having to type it themselves

saves them time if the suggestions are good and appear

quickly. CodeFill has introduced a conversion from python

source code to token sequences, this makes it possible for

CodeFill to predict types [1]. Converting the content of

the file the developer is working on is crucial as this

influences the total latency from the developer typing

something to the suggestion appearing on their screen.

Having as little errors as possible is also important as an

error in conversion results in no suggestions at all.

Improvement of Source Code Conversion for Code Completion

1 Introduct ion

[1] M. Izadi, R. Gismondi, and G. Gousios, “Codefill: Multi-token code completion by jointly learning from structure and naming sequences,” 2022.

To uncover slow parts of the conversion, we decided to use

a program that outlines on which lines the most time is

being spent, also known as a line profiler. To optimize the

performance, we will look at when to use the python

library "pandas" and when to use python's built-in data

structures like list and dictionary for storing and

processing data.

To evaluate our improvements, we will be using the

CodeFill dataset. The part of the dataset we will be using

consists of four separate datasets, in 4 different orders of

magnitude: 400-600, 4K-6K, 40K-60K, and 400K-600K

bytes.

To convert JavaScript source files into token sequences,

we used the js-tokens package to tokenize the source files

into lists of tokens, process this tokenized form, and

produce a new token sequence file.

2 Approach

After improving the python conversion by replacing the

original DataFrame creation with a much more efficient

one, the conversion time for a 77 Kilobyte file went from

536,44 seconds to 6,44 seconds, a speedup of 83x which

can be seen in Figure I.

With more refinements, we eventually got the conversion

function to be even faster than with just this first

improvement.

After running the 4 datasets through the function after the

first improvement and the final conversion function, we

obtained the time it took each function to process each

dataset, they can be seen in Figure II. We also computed

the average speedup for each dataset which can be seen in

Figure II.

We created a simple JavaScript conversion that converts

JavaScript into token sequences, example input and

output can be seen in Figure IV.

3 Results

Mika Turk

Supervisor
Professor
Advisor

Maliheh Izadi
Arie van Deursen
Georgios Gousios

Figure I

The new conversion functions speed up the process

significantly, this allows the use of even larger datasets

which can be used to achieve even greater accuracy. The

changes in the conversion also resulted in a higher

proportion of files being available to process, the 400K-

600K dataset went from 307 to 446 out of 500, a 45%

increase.

4 Conclus ion

Figure IVFigure III

Figure II

m.j.turk@student.tudelft.nl

