The impact of embedding models on disease detection tasks from microbiome sequencing data
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Cardinality: 10°-10°

Sequence size: 175 bases

Subsampling
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Cardinality: 10°

Vector size: depends on embedding model
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(Chron’s)

Microbiome sample

(one dataset sample)

Set of sequences

(strings can occur multiple times)

Classification model

(Supervised binary classification)

Set of embeddings

(1 vector = 1 sequence)

Embedding model

(Transforms each sequence in a vector)
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0.884 on 4-mers, which is an excellent
result considering the signal-to-noise
ratio of the problem (RQ1). Additionally,
the set formulation of the task (RQ2) is
shown to be more effective, scoring a
better AUC on all the embeddings.
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i% Research Question 2: does the set
classification formulation improve the
overall disease detection performance?

one by using a permutation-invariant
function (e.g. the mean) and then
applying a vector classification model.

Setup: k-mer frequency vectors were
tested for k = 3 and k = 4. NeuroSEED
embeddings are produced by a CNN on

Dataset overview: each sample (patient) euclidian space

has a variable number of sequences
(microbes). Below the distribution of the
cardinality of the samples.

Issue: combining the vectors this way
(referred to as baseline) does not allow
the classifier to learn the complex i% Results: The graph shows the ROC
interactions among the sequences. curves for each combination of
embedding model and classifier. 4-mer
embeddings perform 8.6% better
compared to the best model on 3-mers,
that are 6.1% better than NeuroSEED's.

6. Limitations

Tests run on a single disease dataset.
Going above k = 4 was not possible.
Missing alignment-based embeddings.
Influence of the subsampling step
should be further investigated.

o

Proposed approach: Instead of
combining the vectors, we use models
working over sets, namely: Deep Set [1],
o A ow and Set Transformer [2].
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